期刊文献+

基于显著场景Bayesian Surprise的移动机器人自然路标检测 被引量:3

Natural Landmark Detection of Mobile Robots Based on Bayesian Surprise of Salient Scenes
下载PDF
导出
摘要 移动机器人在未知非结构化环境下的自然路标检测是层次化环境建模的基础.文中提出一种基于显著场景Bayesian Surprise的自然路标检测方法.通过计算场景的视觉注意图,引导SURF特征采样聚集在显著区域内,提出融合空间关系的词袋模型构造场景表观的模式向量,建立基于该特征描述的地点Multivariate Polya模型,并通过度量传感器观测的Surprise来获取显著场景对应的路标.实验验证自然路标检测方法在大规模复杂室内环境中具有较低的漏检率和误检率,结合层次化SLAM方法验证路标检测器对生成拓扑节点的有效性. Nature landmark detection of mobile robot in unknown and unstructured environment is a basis of hierarchical environmental mapping. A natural landmark detection method is proposed based on Bayesian Surprise of salient scenes. Visual attention map of scene images is computed to guide the SURF feature sampling within the scope of salient regions. The improved spatial bag-of-words model (sBoW) is employed to construct the pattern vectors of scene appearance. Multivariate Polya model based on the spatial bag-of-words paradigm is proposed for representing the place, and the detection of landmarks corresponding to salient scenes is achieved by computing the surprise of sensor measurements. The experimental results validate the low miss alarm rate and false alarm rate of the nature landmark detection method in large-scale and complex environment, as well as the effectiveness of generating topological nodes with the combination of hierarchical SLAM method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第6期571-576,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61075090 61005092 61105094 61175091)
关键词 视觉注意 空间词袋 贝叶斯奇异 移动机器人 路标检测 Visual Attention, Spatial Bag-of-Words, Bayesian Surprise, Mobile Robot, LandmarkDetection
  • 相关文献

参考文献15

  • 1Hwang S Y, Song]B. Monocular Vision-Based SLAM in Indoor Environment Using Corner, Lamp, and Door Features from Upward?Looking Camera. IEEE Trans on Industrial Electronics, 2011, 58( 10): 4804-4812.
  • 2Chai Xiaojie, Wen Feng , Yuan Kui. Fast Vision-Based Object Segmentation for Natural Landmark Detection on Indoor Mobile Robot//Proc of the International Conference on Mechatronics and Automation. Beijing, China, 2011: 2232-2237.
  • 3Hayet]B, Lerasle F, Devy M. A Visual Landmark Framework for Mobile Robot Navigation. Image and Vision Computing, 2007, 25 (8): 1341-1351.
  • 4Choset H, Nagatani K. Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization without Explicit Localization. IEEE Trans on Robotics and Automation, 2001, 17 (2): 125-137.
  • 5Nuilez P, Vazquez-Martin R, del Toro JC, et al. Natural Landmark Extraction for Mobile Robot Navigation Based on an Adaptive Curvature Estimation. Robotics and Autonomous Systems, 2008, 56 (3): 247-264.
  • 6Beeson P, Jong N K. Kuipers B. Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph//Proc of the IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 4373 -4379.
  • 7Ranganathan A, Dellaert F. Bayesian Surprise and Landmark Detection//Proc of the IEEE International Conference on Robotics and Automation. Kobe, Japan, 2009: 2017-2023.
  • 8Itti L, Baldi P. A Principled Approach to Detecting Surprising Events in Video//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 631-637.
  • 9王璐,蔡自兴.未知环境中基于视觉显著性的自然路标检测[J].模式识别与人工智能,2006,19(1):100-105. 被引量:8
  • 10Alvarez S, Vanrell M. Texton Theory Revisited: A Bag-of-Words Approach to Combine Textons. Pattern Recognition, 2012, 45 (12) : 4312-4325.

二级参考文献24

  • 1Dellaert F, Kaess M. Square root SAM: Simultaneous localization and mapping via square root information smoothing[J]. International Journal of Robotics Research, 2006, 25(12): 1181- 1203.
  • 2Montemerlo M. FastSLAM: A factored solution to the simultaneous localization and mapping problem with unknown data association[D]. Pittsburgh, PA, USA: Robotics Institute, Carnegie Mellon University, 2003.
  • 3Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23 (1): 34-46.
  • 4Estrada C, Neira J, Tardos J D. Hierarchical SLAM: Real-time accurate mapping of large environments[J]. IEEE Transactions on Robotics, 2005, 21(4): 588-596.
  • 5Bosse M, Newman P M, Leonard J, et al. An atlas framework for scalable mapping[C]//International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 1899-1906.
  • 6Tardos J D, Neira J, Newman P M, et al. Robust mapping and localization in indoor environments using sonar data[J]. International Journal of Robotics Research, 2002, 21(4): 311-330.
  • 7Clemente L A, Davison A, Reid I, et al. Mapping large loops with a single hand-held camera[M]//Sukhatme G S, Schaal S, Burgard W, et al (Editor). Robotics: Science and Systems. Cambridge, MA, USA: MIT Press, 2007.
  • 8Leonard J J, Feder H J S. Decoupled stochastic mapping[R]. Cambridge, MA, USA: MIT Press, 2001.
  • 9Ho K L, Newman P M. Loop closure detection in SLAM by combining visual and spatial appearance[J]. Robotics and Au- tonomous Systems, 2006, 54(9): 740-749.
  • 10Pfister S T, Kreichbaum K L, Roumeliotis S I, et al. Weighted range sensor matching algorithms for mobile robot displacement estimation[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1667-1674.

共引文献9

同被引文献23

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部