期刊文献+

改进Kriging方法在螺旋桨测量中的应用 被引量:1

Improvement for Kriging Method in Applications of Blade Measurement
下载PDF
导出
摘要 螺旋桨叶片在测量过程中因桨叶重叠而产生测量盲区,需要对盲区点坐标进行估计,估计精度直接影响桨叶的后期加工。借助Kriging插值算法的基本思想,提出一种基于混合数据(测量数据与设计数据)的改进Kriging插值算法。插值模型中,充分考虑螺旋桨截面线造型特点,使用样条函数构建回归模型;以测量数据构建模型主体,利用设计数据给出测量盲区曲线延展趋势。桨叶重叠区域的实验结果表明,该方法运行高效,估计精度满足企业使用要求。 Some unknown points should be estimated to solve blind measurement area aroused by blade overlap in the process of propeller blade measurement, and the estimation results had an impor- tant effect on the later processing of blades. By means of the basic idea of Kriging interpolation algo- rithm, a improved Kriging interpolation algorithm based on mixture data (measurement data and de- sign data) was put forward. This new model employed spline method as the regression function, and whose subject was made up of measurement data. Besides, the characteristics of propeller section curve were considered adequately and the extension trend of the curve in the blind measurement area would be come up with design data. The experimental results show that the approach is of operation efficien- cy and the estimation results will satisfy application requirements of the enterprises.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第13期1709-1714,共6页 China Mechanical Engineering
基金 国家高技术研究发展计划(863计划)资助项目(2002AA424012) 国家重点基础研究发展计划(973计划)资助项目(2011CB706803)
关键词 控制点 KRIGING插值 样条曲线 回归函数 相关系数 control point Kriging interpolation spline regression function correlation coefficient
  • 相关文献

参考文献10

  • 1Davis J C. Statistics and Data Analysis in Geology[M].New York:wiley,2002.
  • 2牛文杰,朱大培,陈其明.贝叶斯残余克里金插值方法的研究[J].工程图学学报,2001,22(2):68-76. 被引量:10
  • 3Sakata S,Ashida F,Zako M. On Applying Kriging-based Approximate Optimization to Inaccurate Data[J].Computer Methods in Applied Mechanics and Engineering,2007,(13):2055-2069.doi:10.1016/j.cma.2006.11.004.
  • 4Sakata S,Ashida F,Tanaka H. Stabilization of Parameter Estimation for Kriging-based Approximation with Empirical Semivariogram[J].Computer Methods in Applied Mechanics and Engineering,2010,(25):1710-1721.
  • 5Sacks J,Welch W J,Mitchell T J. Design and Analysis of Computer Experiments[J].Statistical Science,1989,(04):409-423.
  • 6Nocedal J,Wright S J. Numerical Optimization[M].New York:springer-verlag,1999.
  • 7Fessler J A. Nonparametric Fixed-interval Smoot hing with Vector Splines[J].IEEE Transactions on Signal Processing,1991,(04):852-859.doi:10.1109/78.80907.
  • 8Fessler J A. Nonparametric Fixed-interval Smoothing of Nonlinear Vector- valued Measurements[J].IEEE Transactions on Signal Processing,1991,(04):907-913.doi:10.1109/78.80913.
  • 9Nielsen H B,Lophaven S N,Sφndergaard J. DACE,a MATLAB Kriging Toolbox[OL].http://www.imm.dtu.dk/~hbn/dace,2012.
  • 10de Boor C. A Practical Guide to Splines[M].New York:springer-verlag,2001.

二级参考文献5

  • 1[1]Henning More. Bayesian Kriging-Merging observation and qualified guesses in Kriging[J]. Mathematical Geology, 1987, 19(1).
  • 2[2]Eulogio Pardo-Iguzquiza. Maximum likelihood estimation of spatial covaiance parameters[J]. Mathematical Geology, 1998,30(1).
  • 3[3]Eulogio Pardo-Iguzquiza, E. MLREML: a computer program for the inference of spatial covarance parameters by maximum likelihood and restricted likelihood [J]. Computers & Geosciences, 1997,23(2).
  • 4[4]Pouzet J. Estimation of a surface with known discontinuties for automatic contouring purposes [J].Mathematical Geology, 1980,12(6).
  • 5[5]Mostad P F. Variogram estimation in a Bayesian framwork [A]. In: Baafi E, Y.Schofield N A, eds. Geostatistics Wollongong'96 [C]. 1997.

共引文献9

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部