期刊文献+

基于CUDA的眼底图像快速自动配准与拼接 被引量:2

Fast Automatic Fundus Images Registration and Mosaic Based on CUDA
下载PDF
导出
摘要 针对眼底图像对比度低、光照不均匀、视场局限及不同视场间存在几何畸变等特点,提出一种基于CUDA的眼底图像快速自动配准与拼接算法。该算法利用CUDA加快了各视场眼底图像同态滤波增强的速度及增强后各有效视场的SIFT特征提取与相互匹配的速度,并加快了结合透视变换模型的RANSAC算法进行的匹配点对提纯速度、周围视场与中央视场变换矩阵的计算速度,配准、融合后得到了眼底全景图像。实际的眼底照相机获取图像的自动配准与拼接表明,该算法可以快速、高精度地实现不同视场眼底图像的自动配准与拼接,算法速度是未采用CUDA的算法的10~30倍,精度达到像素级,具有很好的鲁棒性。 In order to overcome the characteristics of low contrast, non--uniform illumination, limited field of view (FOV), and the geometric distortion between different FOV of the fundus ima- ges, a fast automatic fundus image registration and mosaic algorithm was presented based on CUDA. Fundus images were enhanced by homomorphism filtering and the SIFT features in effective FOV were extracted and matched between images with CUDA speeded up. With CUDA application, point pairs were purified using RANSAC algorithm employed perspective model, transformation matrixes were computed according to the matching point pairs of surrounding FOV images to the central, im- age registration and image fusion was implemented to get fundus panoramic image finally. The auto- matic registration and mosaic results of multiple FOV images obtained by fundus camera show that the algorithm is robust and stability with registration accuracy is up to pixel level, the algorithm speed upgrades 10 to 30 times, high--precision automatic fundus image mosaic can be achieved.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第13期1749-1754,共6页 China Mechanical Engineering
基金 江苏省333高层次人才培养工程资助项目(2007-16-59) 江苏省科技支撑计划资助项目(BE2010652) 南京航空航天大学专项科研项目(2010027)
关键词 计算统一设备架构(CUDA) 尺度不变特征变换 图像配准 图像拼接 compute unified device architecture (CUDA) scale invariant feature transform(SIFT) image registration images mosaic
  • 相关文献

参考文献9

  • 1Brown L G. A Survey of Image Registration Techniques[J].ACM Computing Surveys,1992,(04):325-376.
  • 2Zit(ò)va B,Flusser J. Image Registration Methods:a Survey[J].Image and Vision Computing,2003,(11):977-1000.
  • 3Can A,Stewart C V,Roysam B. A Feature-based,Robust,Hierarchical Algorithm for Registering Pairs of Images of the Curved Human Retina[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(03):347-364.
  • 4张二虎,卞正中,俞江.基于互信息的视网膜眼底图像配准方法[J].西安理工大学学报,2002,18(1):14-17. 被引量:6
  • 5Ryan N,Heneghan C,de Chazal P. Registration of Digital Retinal Images Using Landmark Correspondence by Expectation Maximization[J].Image and Vision Computing,2004,(11):883-898.doi:10.1016/j.imavis.2004.04.004.
  • 6Yang Gehua,Stewart C V,Sofka M. Registration of Challenging Image Pairs:Initialization,Estimation,and Decision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(11):1973-1989.doi:10.1109/TPAMI.2007.1116.
  • 7Lee S,Reinhardt J M,Cattin P C. Objective and Expert-independent Validation of Retinal Image Registration Algorithms by a Projective Imaging Distortion Model[J].Medical Image Analysis,2010,(04):539-549.
  • 8Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision,2004,(02):91-110.doi:10.1023/B:VISI.0000029664.99615.94.
  • 9Fishchler M A,Bolles R C. Random Sample Consensus:a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J].Communications of the ACM,1981,(06):381-395.

二级参考文献4

  • 1[1]Matsopoulos George K,Mouravliansky Nicolaos A,Delibasis Konstantinos K,et al.Automatic retinal image registration scheme using global optimization techniques[J].IEEE Trans On Information Technology In Biomedicine,1999,3(1):47~60.
  • 2[2]Peli E,Augliere R,Timberlake G.Feature-based registration of retinal images[J].IEEE Trans Med Imag,1987(7):272~278.
  • 3[3]Maes F,Collignon A,Vandermeulen D,et al.Multi-modality image registration by maximization of mutual information[J].IEEE Trans Med Img,1997,16(2):187~198.
  • 4[4]Dobrushin R L.General formulation of shannon's main theorem in information[J].Uspekhi Mat Nauk,1959,14(3):92~104.

共引文献5

同被引文献20

  • 1Choe T E, Medioni G, Cohen I, et al. 2-D Registra- tion and 3-D Shape Inference of the Retinal Fundus from Fluorescein Images[J]. Medical Image Analy- sis, 2008, 12(2) :174-190.
  • 2Lin Y, Medioni G. Retinal Image Registration from 2D to 3D[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AN, 2008 1-8.
  • 3Lusk J A, Nutter B. Automated 3-D Reconstruction of Stereo Fundus Images via Camera Calibration and Image Rectification[C]//22nd IEEE International Symposium on Computer-based Medical Systems (CBMS). New YorkIEEE, 20091-7.
  • 4Lowe D G. Distinctive Image Features from Scale- invariant Key- points [J]. Internatinal Journal of Computer Vision, 2004, 60(2)..91-110.
  • 5Tae E C, Medioni G. 3-D Metric Reconstruction and Registration of Images of Near-planar Surfaces[C]// 11th IEEE International Conference on Computer Vi- sion. New York: IEEE, 2007 : 1895-1902.
  • 6Jin H, Soatto S, Yezzi A. Multi-view Stereo Re- construction of Dense Shape and Complex Appear- ance[J]. International Journal of Computer Vi- sion, 2005, 63(3) :175-189.
  • 7朱利成,姚明海.基于SIFT算法的目标匹配和识别[J].机电工程,2009,26(12):73-74. 被引量:14
  • 8史利民,郭复胜,胡占义.利用空间几何信息的改进PMVS算法[J].自动化学报,2011,37(5):560-568. 被引量:28
  • 9闫钧华,杭谊青,许俊峰,储林臻.基于CUDA的高分辨率数字视频图像配准快速实现[J].仪器仪表学报,2014,35(2):380-386. 被引量:27
  • 10苏俊宏,刘胜利.圆柱型高精密零件表面缺陷检测及形貌分析[J].激光与光电子学进展,2014,51(4):150-154. 被引量:24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部