期刊文献+

Real-time fault detection method based on belief rule base for aircraft navigation system 被引量:14

Real-time fault detection method based on belief rule base for aircraft navigation system
原文传递
导出
摘要 Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement. Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期717-729,共13页 中国航空学报(英文版)
基金 the National High-tech Research and Development Program of China(No.2011AA7053016) National Natural Science Foundation of China(No.61174030)
关键词 Belief rule base Fault detection Fault tolerant control Integrated navigation Parameter recursive estimation algorithm Belief rule base Fault detection Fault tolerant control Integrated navigation Parameter recursive estimation algorithm
  • 相关文献

参考文献6

二级参考文献51

共引文献45

同被引文献100

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部