期刊文献+

空间毛细管式蛋白质结晶室样品加载技术研究

Study on Loading Techniques of Protein Species into Space Crystallization Chamber
下载PDF
导出
摘要 采用X-射线衍射技术研究蛋白质分子结构与功能的必要前提是获得高质量的蛋白质晶体.空间微重力环境是生长优质蛋白质晶体的理想场所.蛋白质样品的加载工艺对于空间蛋白质结晶实验的成效具有重要影响.针对为神舟八号飞船空间实验新研制的毛细管式空间蛋白质结晶室,结合样品加载基本流程,对加载工艺和伴随的气泡缺陷问题进行了系统和深入分析,确定了针头形状、毛细管封口质量和硅化效果、样品加载工具以及毛细管夹持方式等影响因素,并获得了实验测试验证.在此基础上,通过改进毛细管烧制工艺和样品加载工具,研制和使用专用毛细管夹具等措施,简化了蛋白质样品加载工艺,消除了气泡缺陷,提高了加载效率.新工艺的实施保证了空间实验任务的顺利完成. The prerequisite of using X-ray diffracting technique to study the relation between protein molecular structure and its function is to obtain the protein crystals of high quality. The microgravity environment of space is an ideal place for culturing such protein crystals. The experimental yield of the space protein crystallization is affected heavily by the loading techniques of the protein species into the crystallization chamber. The loading technique of protein species into the new-designed crystallization chamber for protein crystallization experiment aboard Shenzhou-8 spaceship is studied systematically. It is deduced that the needle shape of the pipette, the protein loading tool, the holding manner of the glass capillary tube, the qualities of sealing and siliconization of the tube have remarkable influences on the experimental results of protein crystallization, which were proved to result in the inclusion of gas bubbles. The corresponding measures such as improving sealing technique and protein loading pipette, constructing a tube-holding tool, are adopted to optimize loading technique and eliminate the gas bubbles. The new techniques have been implemented successfully to the final space experiment of protein crystallization aboard Shenzhou-8 spaceship.
出处 《空间科学学报》 CAS CSCD 北大核心 2013年第4期441-447,共7页 Chinese Journal of Space Science
基金 载人航天工程应用系统项目资助
关键词 空间蛋白质结晶 结晶室 加载工艺 微重力 气泡 Space protein crystallization, Crystallization chamber, Loading technique, Microgravity, Gas bubble
  • 相关文献

参考文献25

  • 1Littke W, John C. Protein single crystal growth undermicrogravity [J]. Science, 1984, 225: 203-204.
  • 2DeLucas L J, Long M M, Moore K M, et al. Recent re-sults and new hardware developments for protein crys-tal growth in microgravity [J]. J. Cryst. Growth, 1994,135(1/2): 183-195.
  • 3毕汝昌.用国产装置进行的空间蛋白质结晶实验[J].空间科学学报,1996,16(3):208-215. 被引量:7
  • 4Lorber B. The crystallization of biological macromoleculesunder microgravity: a way to more accurate three-dimensional structures [J]. Biochim. Biophys. Acta, 2002,1599: 1-8.
  • 5Cang H X, Wang Y P, Han Y, Zhou J X, Bi R C. The spaceexperiment of protein crystallization aboard the Chinesespacecraft SZ-3 [J]. Microgr. Sci. Tech” 2003,14: 13-16.
  • 6Smirnova E A, Kislitsyn Y A, Sosfenov N I,et al Proteincrystal growth on the Russian segment of the InternationalSpace Station [J]. Crystallogr. Reports, 2009,54(5): 901-911.
  • 7Harm D L, Ruttley T M, Gish A. Research in Space: Fa-cilities on the International Space Station [R], NASA, NP-2009-08-604-HQ, 2009.
  • 8McPherson A,Malkin A J, Kuznetsov Y G, et al. The ef-fects of microgravity on protein crystallization: evidencefor concentration gradients around growing crystals [J]. J.Cryst. Growth, 1999,196(2/3/4): 572-586.
  • 9Lin H, Rosenberger F, Alexander J I D, et al. Convective-diffusive transport in protein crystal growth [J]. J, Cryst.Growth, 1995, 151(1/2): 153-162.
  • 10Savino R,Monti R. Buoyancy and surface-tension-drivenconvection in hanging-drop protein crystailizer [J]. J.Cryst. Growth, 1996, 165(3): 308-318.

二级参考文献10

  • 1王耀萍,中国科学.C,1996年
  • 2毕汝昌,Microgravity Sci Tech,1994年,7卷,203页
  • 3董君,科学通报,1994年,38卷,2264页
  • 4Zhu D W,J Mol Biol,1993年,234卷,242页
  • 5韩青,生物物理学报,1993年,9卷,515页
  • 6毕汝昌,中国科学.B,1993年,23卷,1153页
  • 7Gui L L,Chin Sci Bull,1992年,37卷,1394页
  • 8Feng Z,J Mol Biol,1990年,214卷,625页
  • 9陈世芝,生物物理学报,1990年,6卷,91页
  • 10华子千,生物物理学报,1990年,6卷,221页

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部