期刊文献+

锂离子电池负极材料Ge^(4+)掺杂Li_4Ti_5O_(12)的制备及其电化学性能研究 被引量:2

Preparation and Characterization of Ge^(4+)-doping Li_4Ti_5O_(12)Anode Material for Li-ion Battery and Its Electrochemical Properties
下载PDF
导出
摘要 以Ti(OC4H9)4、CH3COOLi.2H2O和GeO2为原料,采用溶胶-凝胶法合成了尖晶石型Li4Ti5-xGexO12(x=0、0.05、0.1、0.15)电极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、充放电测试、循环伏安(CV)以及交流阻抗对材料进行结构、形貌及电化学性能表征。研究结果表明,适量Ge4+掺杂不会改变Li4Ti5O12的尖晶石结构,但对其颗粒尺寸和形貌均产生影响。由于掺Ge4+后样品的颗粒尺寸减小,使得Ge4+掺杂Li4Ti5O12倍率性得到不同程度的提高。其中Li4Ti4.9Ge0.1O12显示出较好的倍率性和循环稳定性,0.2C下的首次放电容量为172.43 mAh/g,5C下循环100次后比容量为140.62 mAh/g,容量保持率为97.3%。 The spinel Li4Ti5-xGexO12(x=0,0.05,0.1,0.15) electrode materials were successfully synthesized by Sol-Gel method using Ti(OC4H9)4,CH3COOLi 2H2O and GeO2 as raw materials.The crystalline structure,morphology and electrochemical properties of the obtained materials were characterized by XRD,SEM,half cell charge-discharge tests,cyclic voltammetry(CV) and AC impedance.The results showed that doping with certain amount of Ge4+did not change the basic structure of Li4Ti5O12,but greatly affected its mophology and particle size.Ge-doped Li4Ti5O12 has relatively high rate capability due to the smaller particle size.In this study,Li4Ti4.9Ge0.1O12 represented the highest initial discharge capacity and the best cycling performance among all samples.At the charge-discharge rate of 0.2C,its first discharge capacity was 172.43 mAh/g,and at 5C rate,its discharge capacity remained at 140.62 mAh/g after 100 cycles with a capacity retention of 97.3%.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第7期727-732,共6页 Journal of Inorganic Materials
基金 广东省科技计划项目(2012B010200040) 广东省粤港招标重点项目(2010A090602001)~~
关键词 锂离子电池 LI4TI5O12 Ge4+掺杂 倍率性 Li-ion battery Li4Ti5O12 Ge4+-doping rate performance
  • 相关文献

参考文献2

二级参考文献60

  • 1Colbow K M, Dahn J R, Haering R R. J. Power Sources, 1989,26:397-402.
  • 2Zaghib K, Armand M, Gauthier M. J. Electrochem. Soc.,1998,145:3135-3140.
  • 3Guerfi A, Sevigny S, Lagace M, et al. J. Power Sources, 2003, 119-121:88-94.
  • 4LIUDong-Qiang(刘东强) LAIQiong-Yu(赖琼珏) HAOYan-Jing(郝艳静) etal.Wuji Huaxne Xnebao,2004,20(7):829-832.
  • 5Wolfenstine J, Lee U, Allen J L. J. Power Sources, 2006, 154:287-289.
  • 6Leonidov I A, Leonidova Q N, Perelyaeva L A, et al. Phys. Solid State, 2003,45(2):2183-2186.
  • 7Aldon L, Kubiak P, Womes M, et al. Chem. Mater., 2004,16: 5721-5726.
  • 8Zaghib K, Simoneau M, Armand M, et al. J. Power Sources, 1999,81-82:300-305.
  • 9Guerfia A, Sevignya S, Lagacea M, et al. J. Power Sources, 2003,119-121:88-94.
  • 10Nakahara K, Nakajima R, Matsushima T, et al. J. Power Sources, 2003,117:131-136.

共引文献16

同被引文献26

  • 1高玲,仇卫华,赵海雷.Li_4Ti_5O_(12)作为锂离子电池负极材料电化学性能[J].北京科技大学学报,2005,27(1):82-85. 被引量:28
  • 2郗凯,李颖.纳米棒状Li-Ti-O化合物的制备与电化学嵌锂性能[J].稀有金属材料与工程,2010,39(11):2051-2054. 被引量:2
  • 3Ge H, Chen L, Lin S, et al. Advanced electrochemical per- formances of LLTi50JAg prepared by a facile synthesis route[J]. Ionics, 2014, 20(8): 1-4.
  • 4Chen Y M, Li X Y, Zhou X Y, et al. HoUow-Rmneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials[J]. En- ergy & Environmental Science, 2014, 7: 2689-2696.
  • 5Lin C C, Wu H C, Pan J P, et al. Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode[J]. Eleetrochimica Acta, 2013, 101: 11-17.
  • 6Lin C F, Ding B, Xin Y L, et al. Advanced electrochemical performance of Li4TiO,2-based materials for lithium-ion battery: Synergistic effect of doping and compositing [J].Journal of Power Sources, 2014, 248: 1034-1041.
  • 7Pang W K, Peterson V K, Sharma N, et al. Lithium migration ill Li4Ti5Ol2 studied using in-situ neutron powder diffraction [J]. Chemistry of Materials, 2014, 26 (7):2318-2326.
  • 8Fan L Z, Ni H. Structure design and doping modification of Li,TisO,2 for lithium ion batteries[C]//The Electrochem- ical Society, 225th ESC Meeting, May 11-15, 2014, Orlan- do, Florida, USA, 2014: 281.
  • 9Liu X F, Tong S F, Dai C G, et al. Synthesis of quasi-sph- erical micro-size lithium titanium oxide by an easy sol-gel method[J]. Journal of Solid State Electrochemistry, 2014: 1-7.
  • 10Judd M D, Plunker B A, Pope M I. The thermal decom- position of calcium, sodium, silver and copper(11) acetates [J]. Journal of Thermal Analysis, 1974, 6(5): 555-563.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部