期刊文献+

超声造影监测儿童及婴幼儿体外循环下肾脏微循环灌注的初探 被引量:5

Monitoring Renal Microcirculation Perfusion Alteration with Contrast-enhanced Ultrasound during Cardiopulmonary Bypass
原文传递
导出
摘要 目的探讨采用超声微泡造影方法监测儿童及婴幼儿体外循环下肾脏微循环灌注的改变。方法建立体外循环30min后,采用实时谐波超声造影技术获取肾脏超声微血管造影图像,分析肾脏不同区域灌注时间-强度(TIC)曲线,获取相关定量参数,包括上升支斜率(A)、曲线下面积(AUC)、曲线峰值强度绝对值(DPI)、达峰时间(TTP),比较不同采集时间点、不同区域灌注相关参数差异。结果体外循环期间肾脏各个区域(髓质锥体、深层皮质及浅层皮质区域)灌注参数相对于体外循环前均降低或延长(P<0.05)。结论体外循环对儿童肾脏灌注产生明显的影响,其表现为全肾灌注降低及局部灌注性差异,以髓质区域的灌注降低最为明显。超声微泡造影技术能够清晰地显示体外循环期间肾脏微循环灌注功能状态的改变。 Objective To investigate the monitoring of renal microcirculation perfusion alteration with contrast-enhanced ultrasound (CEU) during cardiopulmonary bypass (CPB). Methods Renal microcirculation perfusion before and during CPB was assessed by CEU. Time-intensity curve (TIC) were derived from three region of interest (ROD using QLAB post-analysis software. Parameters such as TIC curve wash in slope (A), area under curve (AUC), peak intensity (DPI) as well as time to peak intensity (TTP) were then calculated. Results Contrast-enhanced ultrasound showed a significant reduction (or elongation) of perfusion parameter (A, AUC, DPI,TTP) in all three regions (superficial cortex, deep cortex and medulla) during cardiopulmonary bypass in comparison with normal cardiac cycle. Conclusion Cardiopulmonary bypass (CPB) has a dramatic impact on renal microcirculation in pediatric patients which manifest as global reduction in renal perfusion as well as significant region perfusion difference. Contrast-enhanced ultrasound (CEU) could detect the renal microcirculation alteration during CPB.
出处 《四川大学学报(医学版)》 CAS CSCD 北大核心 2013年第4期646-650,共5页 Journal of Sichuan University(Medical Sciences)
基金 四川省科技支持计划(No.2011FZ0016)资助
关键词 超声造影 体外循环 肾脏微循环 Contrast-enhanced ultrasound Cardiopulmonary bypass Renal perfusion
  • 相关文献

参考文献13

  • 1Lerman LO, Chade AR. Angiogenesis in the kidney: a new therapeutic target? Curr Opin Nephrol Hypertens , 2009; 18 (2): 160-165.
  • 2Iliescu R, Fernandez SR, Kelsen S, et al . Role of renal microcircula tion in experimental renovascular disease. N ephrol Dial Transplant,2010;25(4) :1079-1087.
  • 3Chade AR, Kelsen S. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease. Circ Cardiovasc Interv , 2010; 3( 4) : 376-383.
  • 4Kumar AB, Sunejia M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology, 2011; 114( 4) : 964-970.
  • 5Aronson S, Fontes ML, Miao Y, et al . Risk index for perioperative renal dysfunction/failure: critical dependence on pulse pressure hypertension. Circulation, 2007; 115 (6): 733- 742.
  • 6Andersson LG, Bratteby LE, Ekroth R, et al . Renal function during cardiopulmonary bypass: influence of pump flow and systemic blood pressure. Eur J Cardiothorac Surg , 1994; 8 (11) : 597-602.
  • 7Kalantarinia K, Belcik JT, Patrie JT, et al . Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am J Physiol Renal Physiol , 2009;297(4):1129-1134.
  • 8Gessner R, Dayton P A. Advances in molecular imaging with ultrasound. Mol Imaging,2010;9(3) :117-127.
  • 9Baskin E, Saygili A, Harmanci K, et al . Acute renal failure and mortality after open-heart surgery in infants. Ren Fail, 2005 ;27(5) :557-560.
  • 10Boigner H, Brannath W, Hermon M, et al . Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann Thorac Surg,2004;77(1) :61-65.

同被引文献33

  • 1Mao H, Katz N, Ariyanon W, et al. Cardiac surgery- associated acute kidney injury. Cardiorenal Med, 2013 ; 3 (3) : 178-199.
  • 2Kolli H, Rajagopalam S, Patel N, et al. Mild acute kidney injury is associated with increased mortality after cardiac surgery in patients with eGFR 60 mL/min/1. 73 mz. Ren Fail,201032(9) : 1066-1072.
  • 3Chade AR. Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis. Am J Physiol Regul Integr Comp Physiol, 2011 300 (4) .. R783-R790.
  • 4Iliescu R, Fernandez SR, Kelsen S, et al. Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant,201025(4):1079-1087.
  • 5Kim HK, Son HS, Fang YH, et al. The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: a comparative study of pulsatile and nonpulsatile flow. ASAIO J, 2005 51 (1) 30-36.
  • 6Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care, 2011 ; 1 (1) : 13. doi: 10. 1186/ 2110-5820-1-13.
  • 7Kalantarinia K, Belcik JT, Pattie JT, et al. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound, Am J Physiol Renal Physiol, 2009 297(4) : F1129-F1134.
  • 8Wei K, Le E, Bin JP, etal. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coil Cardiol, 2001,37 (4) : 1135-1040.
  • 9Dong Y, Wang W, Cao J, et al, Comparative study of contrast-enhanced ultrasonography and 99mTc-DTPA renography in the diagnosis of kidney dysfunction. Ultrasound Med Biol,2011 37(8 Suppl) :816,.
  • 10Ma F, Cang Y, Zhao B, et al. Contrast-enhanced ultrasound with SonoVue could accurately assess the renal microvaseular perfusion in diabetic kidney damage. Nephrol Dial Transplant, 2012 27(7) ; 2891-2898.

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部