摘要
文中利用初等方法以及同余理论,讨论三次Diophantine方程x3-1=2py2当p为适合p≡1(mod6)的奇素数时的可解性。给出了该方程有解的充要条件和推论,并且仅有正整数解(x,y)=(2a2+1,aB(4a4+6a2+3))及(x,y)=(6a2+1,3aB(12a4+6a2+1))。
In this paper some elementary methods and congruence theory are used to discuss the solvability of the cubic Diophantine equation x3 - 1 = 2py2 when p is an odd prime with p = 1 ( mod6 ). A necessary and sufficient condition for the equation to have solutions and its corollaries are given, and the only positive integer solutions of the equation are (x,y) = (2a2 + 1,aB(4a4 +6a2 +3)) and (x,y) = (6a2 + 1,3aB(12a4 +6a2 + 1)).
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期361-363,共3页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11071194)
陕西省自然科学基金资助项目(2012JM1021)
陕西省教育厅科研计划基金资助项目(12JK0880)