期刊文献+

铝基超疏水表面制备与形成机理

Preparation of Superhydrophobic alumina surface and its formation mechanics
下载PDF
导出
摘要 本文通过NaCl和C6H12N4混合溶液140℃热处理铝箔表面,再经氟化制备出铝基超疏水表面,并用扫描电镜分析了不同温度的混合溶液处理后铝箔表面形貌。研究表明:混合溶液的反应温度直接影响着铝表面形貌,决定着疏水性质。结果显示,具有微米级类花朵形状的表面表现出超疏水性。 The paper prepared the Superhydrophobic alumina surface by using the mixture solution of NaCl and C6H12N4 to modify the surface of alumina in 140℃ firstly.And then the surface of alumina was fluorinated.To study the formation mechanism of the superhydrophobic surface,the SEM photos of alumina surfaces were gained in the different temperature of the chemical reaction.The result showed that the reactor temperature decided the surface structure,and the superhydrophobic characteristics of the flower-like surface structure are better than others.
出处 《华北科技学院学报》 2013年第2期51-53,共3页 Journal of North China Institute of Science and Technology
基金 中央学校基本科研业务费专项基金资助项目(编号:2011B24)
关键词 超疏水 Cassel模型 SEM Superhydrophobic surface Cassel model SEM
  • 相关文献

参考文献8

  • 1W. Barthlott, C. Neinhuis. , Purity of the Sacred Lotus or Escape from Contamination in Biological Surfaces. Planta. 1997, 202(1): 1-8.
  • 2L. Feng, S. Li, et. al. Super - Hydrophobic Sur- faces: From Natural to Artificial. Advanced Ma- terials. 2002, 14(24) :1857 -1860.
  • 3R. Wang, K. Hashimoto, et. al. Photogeneration of Highly Amphiphilic TiO2 Surfaces. Advanced Materials. 1998, 10(2) : 135 - 138.
  • 4郑黎俊,乌学东,楼增,吴旦.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699. 被引量:58
  • 5T. Nishino, M. Meguro, eL al. The Lowest Sur- face Free Energy Based on - CF3 Alignment. Langmuir. 1999, 15(13) : 4321 -4323.
  • 6R. N. Wenzel. Resistance of Solid Surface to Wet- ting by Water. Industrial Engineering Chemistry. 1936, 28(8): 988-994.
  • 7A. B. D. Cassie, S. Baxter. Wettability of Porous Surfaces. Transactions of the Faraday Society. 1944, 40:546-561.
  • 8Hu D. Z. , Mi B. Z. , et. ak The pressure of the superhydrophobic surface under droplet gravity, Advance Material Research ,2012,452:91 - 94.

二级参考文献41

  • 1Lafuma A,Quere D.Superhydrophobic states.Nature Materials,2003,2:457~460
  • 2Feng L,Li S,Li Y,et al.Super-hydrophobic surfaces: From Natural to artificial.Adv Mater,2002,14:1857~1860
  • 3Blossey R.Self-cleaning surfaces-virtual realities.Nature Materials,2003,2:301 ~306
  • 4Wang R,Hashimoto K,Fujishima A,et al.Light-induced amphiphilic surfaces.Nature,1997,388:431~432
  • 5Benedix R,Dehn F,Quaas J,et al.Application of titanium dioxide photocatalysis to create self-cleaning building materials.Lacer,2000,5:157~166
  • 6Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces.Annals of Botany,1997,www.scichina.com79:667~677
  • 7Barthlott W,Neinhuis C.Purity of the sacred lotus or escape from contamination in biological surfaces.Planta,1997,202:1~8
  • 8Gu Z-Z,Uetsuka H,Takahashi K,et al.Structure color and the lotus effect.Angew Chem Int Ed,2003,42(8): 894~897
  • 9Wenzel R N.Resistance of solid surfaces to wetting by water.Ind Eng Chem,1936,28:988~994
  • 10Cassie A,Baxter S.Wettability of porous surfaces.Trans Faraday Soc,1944,40:546~551

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部