期刊文献+

一类奇异非线形多调和方程组的正整体解

Positive entire solutions for a class of singular nonlinear poly-harmonic systems
下载PDF
导出
摘要 以Schauder-Tychonoff不动点定理为理论依据,研究了形如△nuj=fj(︱x︱,u1,u2,︱▽u1︱,︱▽u2︱)uj-αj,αj>0,x∈R2,j=1,2的奇异非线性多调和方程组在R2上正的整体解,给出了存在无穷多个在无穷远点满足指定的渐进性质的整体解的充分条件。 Based on Schauder-Tychonoff fixed point theorem, this paper studies positive entire solutions for two singular nonlinear poly-harmonic systems with the following form △nuj=fj(|x|,u1,u2,| u1|,| u2|)uj-oj,αj〉0,x∈R2,j=1,2. And some sufficient conditions for infinitely many positive entire solutions satisfying appointed asymptotic properties in infinite point are obtained.
作者 许建艺
出处 《闽西职业技术学院学报》 2013年第2期104-108,共5页 Journal of Minxi Vocational and Technical College
关键词 非线性多调和方程组 奇异 正整体解 不动点定理 non-linear poly-harmonic systems singular positive entire solutions fixed point theorem
  • 相关文献

参考文献14

  • 1文如庆,陈世明.一类半线性双调和方程的整体解[J].应用数学,1994,7(1):85-92. 被引量:20
  • 2吴炯圻.奇异非线性p-调和方程的一类正整体解[J].系统科学与数学,2005,25(3):276-283. 被引量:5
  • 3吴炯圻.一类奇异非线性方程的正整体解存在的充分必要条件[J].应用数学,2002,15(3):53-57. 被引量:5
  • 4叶常青.R^2上的奇异非线性双调和方程正整体解[J].苏州大学科技:A辑,2001,21(1):138-144.
  • 5A.V.Lair, A.W.Wood. Existence of Entire Large Positive So- lutions of Semilinear Elliptic Systems [J]. J.Diff.Equations. 2000,164: 380-394.
  • 6X.Wang. Existence and Nonexistence of Entire Positive So- lutions of Semilinear Elliptie Systems[J]. J.math.Anal. Appl, 2002, 267: 361-368.
  • 7T.Tomomitsu. On Positive Radial Entire Solutions of Second Order Quasilinear Elliptic Systems [J]. J.math.Anal. Appl, 2003, 282: 531-552.
  • 8WU Jiong-qi. On the Existence of Radial Positive Entire Solutions for Polyharmonic systems [J]. J.math. Anal. Appl, 2007, 326:443-455.
  • 9Yasuhiro, T. Kusano. Positive Entire Solutions to Nonlinear Biharmonic Equations in the Plane [J]. Journal of Com- putional and Applied Mathematics, 1998(88), 161-173.
  • 10Edwards R E. Functional Analysis[M]. New York: Holt Rinehart and Winston,1965.

二级参考文献22

  • 1吴炯圻.R^N上奇异非线性多调和方程的正整体解[J].系统科学与数学,2004,24(3):332-339. 被引量:9
  • 2文如庆,陈世明.一类半线性双调和方程的整体解[J].应用数学,1994,7(1):85-92. 被引量:20
  • 3许兴业.关于R^n中奇异非线性双重调和方程正整解的存在性[J].南京大学学报:数学半年刊,1998,15(1):99-105.
  • 4Yasuhiro Furusho, Kusano Takasi,Akio Ogata. Symmetric positive entire solutions of second order quasilinear degenerate elliptic equations [J]. Arch. Rational Mech. Anal. 1994,127: 231~254.
  • 5Tomomitsu Teramoto. On positive radial entire solutions of second order quasilinear elliptic systems [J]. J. Math. Anal. Appl. ,2003,282:531~552.
  • 6Serrin J,Zou H. Symetry of ground states of quasilinear elliptic equations[J]. Arch. Rational Mech.Anal. , 1999,148: 265~290.
  • 7Adams R A. Soblev spaces[M]. New York :San francisco Academic Press,1975.
  • 8Edwards R E. Functional analysis[M].New York:Holt Rinehart and Winston,1985.
  • 9Hardy G, Littlewood J E & Polya G. Inequalities[M]. London:Cambridge Univ. Press, 1967.
  • 10Yasuhiro Furusho, Kusano Takasi. Positive entire solutions to nonlinear biharmonic equations in the plane. Journal of Computional and applied mathematics, 1998, 88: 141-153.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部