期刊文献+

具有Perron-Frobenius性质矩阵非主特征值的上界

An Upper Bound of the Eigenvalues other than the Spectral Radius for Matrices Having the Perron-Frobenius Property
下载PDF
导出
摘要 提出具有常行和的矩阵,讨论其特征值的界,进而给出具有Perron-Frobenius性质矩阵的非主特征值的一个上界。并给出数值例子说明结果的有效性。 The class of matrices with a constant row sum was presented, and the bounds for its eigenvalues were studied to give an upper bound of the eigenvalues other than the spectral radius for matrices having the Perron- Frobenius property. Numerical examples were given to show the effectivity of the obtained results.
出处 《贵州大学学报(自然科学版)》 2013年第3期4-6,共3页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金(71161020) 云南大学理(工)科校级科研基金(2012CG017) 云南大学"大学生创新创业训练计划项目"基金(2012008)
关键词 Perron—Frobenius性质 特征值 Perron-Frobenius property eigenvalues bounds
  • 相关文献

参考文献10

  • 1L Hogben. Handbook of Linear algebra [ M ]. Boca Raton : Chap- man and Hall/CRC Press, 2007.
  • 2R A Horn, C R Johnson. Matrix Analysis [ M]. Cambridge:Cam- bridge University Press, 1991.
  • 3R S Varga. Matrix lterative Analysis [ M]. Berlin: Springer-Ver- lag, 2000.
  • 4C R Johnson, P Tarazaga. On matrices with Perron-Frobenius properties and some negative entries [ J]. Positivity, 2004, 8 : 327 - 338.
  • 5D Noutsos. On Perron-Frobenius property of matrices having some negative entries [J]. Linear Algebra Appl. , 2006, 412:132 - 153.
  • 6D D Olesky, M J Tsatsomeros, P. Van Den Driessche. My-matri- ces: A generalization of M-matrices based on eventually nonnega- rive matrices [ J ]. Electronic Journal of Linear Algebra, 2009, 18, 339-351.
  • 7A. Elhashash. Characterizations of matrices enjoying the Perron- Frobenius property and generalizations of M - matrices which may not have nonnegative inverses [ D ]. Philadelphia: Temple Universi- ty, 2007.
  • 8A. Elhashash and D. B. Szyld. On general matrixces having the Perron-Frobenius property [ J]. Electronic Journal of Linear Alge- bra, 2008, 17:389-413.
  • 9O Perron. Zur Theorie der Matrizen [ J ]. Mathematische Annalen, 1907, 64:248-263.
  • 10G F Frobenius. Uber Matrizen aus nieht negativen Elementen [ M ]. Berlin : Preussiche Akademie der Wissenschaften zu Berlin, 1912.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部