期刊文献+

含变系数的线性分数阶微分方程的解析解(英文)

Analytic Solutions to Varying Coefficient Linear Fractional Differential Equations
下载PDF
导出
摘要 本文利用算子级数给出了含变系数线性分数阶微分方程的解析解,并通过几个例子说明了解析表达式的重要性.另外,我们还得到了分数阶Gronwall不等式的微分形式和积分形式,它们是经典Gronwall不等式的推广. In this paper, we give analytic solutions to varying coefficient linear fractional dif- ferential equations in terms of operator series. Several examples illustrate the use- fulness of the proposed analytic expressions. Gronwall's differential and integral inequalities for fractional differential equations are obtained. These inequalities are extensions of the classical Gronwall's differential and integral inequalities.
出处 《工程数学学报》 CSCD 北大核心 2013年第4期475-487,共13页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11071192) he International Science and Technology Cooperation Program of China(2010DFA14700) he Fundamental Research Funds for the Central Universities in China
关键词 分数阶微分方程 算子级数收敛性 Mittag-Leffler函数 fractional differential equations convergence for operator series Mittag-Lef[lerfunctions
  • 相关文献

参考文献13

  • 1Bonilla B, Rivero M, Trujillo J J. Linear differential equations of fractional order[C]// Advances in Frac- tional Calculus: Theoretical Developments and Applications in Physics and Engineering, 2007.
  • 2Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: North-Holland Mathematics Studies, 2006.
  • 3Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999.
  • 4Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation[J]. Journal of Mathematical Analysis aad Applications, 1996, 204(2): 609-625.
  • 5Diethelm K, Neville J F. Analysis of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2002, 265(2): 229-248.
  • 6Kosmatov N. Integral equations and initial value problems for nonlinear differential equations of fractional order[J]. Nonlinear Analysis, 2009, 70(7): 2521-2529.
  • 7Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(8): 2677-2682.
  • 8Jiang Y L. Periodic waveform relaxation solutions of nonlinear dynamic equations[J]. Applied Mathematics and Computation, 2003, 135(2-3): 219-226.
  • 9Jiang Y L, Chen R M M, Huang Z L. A parallel approach for computing complex eigenvalue problems[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2000, E83- A(10): 2000-2008.
  • 10Denton Z, Vatsala A S. Fractional integral inequalities and applications[J]. Computers and Mathematics with Applications, 2010, 59(3): 1087-1094.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部