期刊文献+

两线性流形之间夹角的算法(英文) 被引量:1

An Algorithm for Calculating the Angle Between Two Linear Manifolds
下载PDF
导出
摘要 本文将3维欧氏空间中直线与平面的夹角推广到n维欧氏空间中两线性流形的夹角,并用带线性和二次等式约束的二次规划刻画这个夹角,从而,把求两线性流形夹角的问题转化为求解非凸二次规划问题,由此,给出了计算这种夹角的一个算法和数值算例.在该数值算例中,我们应用Grbner基理论求解非凸二次规划问题. Generalizing the angle between a line space, we define the angle between and a plane in a 3-dimensional Euclidean two nontrivial linear manifolds in an ndimensional Euclidean space, which is characterized by a quadratic programming problem with constraints of linear and quadratic equations. Therefore, finding this angle is transformed to solving a non-convex quadratic programming problem. Thus, we present an algorithm for finding this angle, and give a numerical example. We solve the non-convex quadratic programming in this example by means of the GrSbner basis theory.
作者 张圣贵
出处 《工程数学学报》 CSCD 北大核心 2013年第4期517-524,共8页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11071041)
关键词 夹角 GROBNER基 非凸二次规划 angle Grobner basis non-convex quadratic programming
  • 相关文献

参考文献3

  • 1Bjork A, Golub Q H. Numerical methods for computing angles between linear subspaces[J]. Mathematics of Computation, 1973, 27(123): 579-594.
  • 2Adams W W, Loustaunau P. An Introduction to Grobner Bases[M]. Washington: American Mathematical Society, 1994.
  • 3Mishra B. Algorithmic Algebra[M]. New York: Springer-Verlag, 2001.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部