期刊文献+

基于通量非结构网格有限体积法的Level Set方程求解

A Flux-based Unstructured Grids Finite Volume Method for Level Set Equation
下载PDF
导出
摘要 在非结构网格上,采用基于通量的格心有限体积法求解Level Set方程,并给出了其数值离散格式.对Zalesak圆盘、旋转收缩圆及圆面剪切三个经典界面运动问题进行了数值模拟,其质量盈亏量与收敛阶的计算结果表明,该方法克服了传统数值方法造成的质量不守恒的缺点,能准确有效地求解拓扑结构发生变化的复杂运动界面问题,且计算量较格点格式大为减少. A flux-based cell-centered finite volume method for solving the Level Set equation on unstructured grids is presented and the discretization scheme is deduced as well. Three benchmark numerical problems about interface evolution, namely Zalesak's disk rotation, circle rotation and shrink and vortex-in-a-box, are solved numerically by the proposed finite volume method. The mass errors and the order of the convergence are calculated and compared with those obtained by the traditional methods. The results show that the proposed method more accurately solves the mass loss problem that exists in the traditional methods. In addition, the proposed method can capture moving interface with complex topological structure accurately and efficiently. Compared with the node-centered finite volume method, the computation cost is greatly decreased by utilizing our method.
出处 《工程数学学报》 CSCD 北大核心 2013年第4期619-628,共10页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10871159)~~
关键词 LEVEL SET 非结构网格 格心有限体积法 Level Set unstructured grids cell-centered finite volume method
  • 相关文献

参考文献14

  • 1Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Ge- ometry, Fluid Mechanics, Computer Vision and Materials Sciences[M]. Cambridge: Cambridge University Press, 1999.
  • 2Sethian J A. Fast marching methods[J]. SIAM Review, 1999, 41(2): 199-235.
  • 3Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton- Jacobi formulation[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
  • 4Shu C W, Osher S. Efficient implementation of essential non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471.
  • 5Sussman M, Fatemi E. An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow[J]. SIAM Journal on Scientific Computing, 1999, 20(4): 1165-1191.
  • 6Sussman M, Puckett E. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337.
  • 7Enright D, et al. A hybrid particle level set method for improved interface capturing[J]. Journal of Com- putational Physics, 2002, 183(1): 83-116.
  • 8Marchandise E, Remacle J F, Chevaugeon N. A quadrature-free discontinuous Galerkin method for the level set equation[J]. Journal of Computational Physics, 2006, 212(1): 338-357.
  • 9Kossioris G, Makridakis C, Souganidis P E. Finite volume schemes for Hamilton-Jacobi equations[J]. Nu- merische Mathematik, 1999, 83(3): 427-442.
  • 10Frolkovic P, Mikula K. Flux-based level set method: a finite volume method for evolving interfaces[J]. Applied Numerical Mathematics, 2007, 57(4): 436-454.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部