摘要
一个简单连通图G=(V,E)的粘连度定义为T(G)=min{(|S|+τ(G-S))/ω(G-S):S■V(G)为G的割集},其中τ(G-S)和ω(G-S)分别表示G-S中最大连通分支的阶和G-S的连通分支数.粘连度是一个重要的描述网络抗毁性的参数,它同时考虑了G-S的分支数和大小.对于路和圈的笛卡尔积图,通过分情形讨论得到了它的粘连度的计算公式.
Let O= (V,E) be a simple connected graph,the tenacity of G is defined as T(G)=rain{ (]SI + r(G--S))/(oJ(G--S)) .S_V(G) is a cut set of G) ,where r(G--S) and o(G--S) denote the order of the largest component and the number of components in G--S, respectively. Tenacity is an important param- eter to measure the invulnerability of networks, as it takes into account both the quantity and order of components of G--S. The formula of the tenacity of the Cartesian product graphs of paths and cycles are given.
出处
《纺织高校基础科学学报》
CAS
2013年第2期187-191,共5页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11271300)
关键词
粘连度
笛卡尔积
抗毁性
tenacity Cartesian product invulnerability