期刊文献+

路和圈的笛卡尔积图的粘连度

Tenacity of the cartesian product graphs of paths and cycles
下载PDF
导出
摘要 一个简单连通图G=(V,E)的粘连度定义为T(G)=min{(|S|+τ(G-S))/ω(G-S):S■V(G)为G的割集},其中τ(G-S)和ω(G-S)分别表示G-S中最大连通分支的阶和G-S的连通分支数.粘连度是一个重要的描述网络抗毁性的参数,它同时考虑了G-S的分支数和大小.对于路和圈的笛卡尔积图,通过分情形讨论得到了它的粘连度的计算公式. Let O= (V,E) be a simple connected graph,the tenacity of G is defined as T(G)=rain{ (]SI + r(G--S))/(oJ(G--S)) .S_V(G) is a cut set of G) ,where r(G--S) and o(G--S) denote the order of the largest component and the number of components in G--S, respectively. Tenacity is an important param- eter to measure the invulnerability of networks, as it takes into account both the quantity and order of components of G--S. The formula of the tenacity of the Cartesian product graphs of paths and cycles are given.
作者 王艺 李银奎
出处 《纺织高校基础科学学报》 CAS 2013年第2期187-191,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11271300)
关键词 粘连度 笛卡尔积 抗毁性 tenacity Cartesian product invulnerability
  • 相关文献

参考文献6

  • 1BONDY J A, MURTY U S R. Graph theory with applications[ M] London: Macmillan, New York: Elsevier, 1976.
  • 2COZZENS M, MOAZZAMI D, STUECKLE S. The tenacity of a graph[C]. Proc Seventh International Cor on the Theory and Applications of Graphs, New York: Wiley, 1995 : 1 111-1 112.
  • 3MANN D E. The tenacity of trees[D]. Boston: Northeastern University, 1993.
  • 4COZZENS M, MOAZZAMI D, STUECKLE S. The tenacity of the H arary graphs[J]. Comhin Math Combin Comput, 1994,16:22-56.
  • 5CHOUDUM S A,PRIYA N. Tenacity of complete graph products and grids[J]. Networks, 1999,34:192-196.
  • 6李银奎.图的毁度与其它抗毁参数的关系[J].纯粹数学与应用数学,2008,24(1):21-24. 被引量:2

二级参考文献5

  • 1Bondy J A,Murty U S R. Graph Theory with applications [M]. New York:The Macmillan Press LTD,1967.
  • 2Li Y, Zhang S,Li X. The rupture degree of graphs [J].Int. J. Computer Math.,2005,82(7):793-803.
  • 3韩星楼.图的连通性参数[D].西安:西北工业大学数学系资料室,1999.
  • 4Li F, Li X. Computing the rupture degrees of graphs [J]. IEEE, Compute society. Proc., California:IEEE Comuter Society Press,2004.
  • 5ChvatalV. Tough graphs and hamiltonian circuits [J]. Discrete Math., 1973,5: 215-228.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部