期刊文献+

基于沟长偏置的近阈值逻辑漏功耗减小技术

Gate-length Biasing for Near-threshold Logic Leakage Reduction
下载PDF
导出
摘要 随着集成电路芯片特征尺寸的不断缩小,减小漏功耗已成为集成电路设计技术的焦点之一.在近阈值逻辑电路中,亚阈值漏电流是其最主要漏电流的构成.根据MOS器件沟道长度与亚阈值漏电流之间的非线性关系,通过适度提高MOS器件的沟道长度从而降低CMOS逻辑电路的漏功耗,形成了基于沟长偏置的漏功耗减小技术.应用HSPICE软件对基于45nm PTM工艺参数沟长偏置为8%的基本逻辑门电路、镜像加法器和传输门加法器的漏电流进行了仿真测试,实验结果表明漏电流约下降了39%~44%.因此沟长偏置技术是一种有效的适用于近阈值逻辑的漏功耗减小技术. With processing chips scaling down,leakage power reduction has become one of the most important design concerns.In this paper,we propose small biases of transistor gate-length to further minimize leakage power based on the fact that the sub-threshold leakage current is the main component of the total leakage in near-threshold logic circuits.Due to the super-linearity between sub-threshold current and gate length,the leakage current reduction can be considerably achieved by slightly increasing the gate-length.Three basic logic gates,a mirror adder and a transmit adder with 8% gate-length biasing are realized and simulated using HSPICE at a 45nm CMOS process with the PTM model.Simulation results show that the leakage current of those circuits is reduced 39%-44% compared with the nominal gate-length ones.Therefore,the gate-length biasing technique is an attractive approach for low leakage near-threshold circuits.
出处 《宁波大学学报(理工版)》 CAS 2013年第3期45-50,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(61071049) 宁波市自然科学基金(2011A610102) 浙江省教育厅科研项目(Y201120962)
关键词 亚阈值漏电流 沟长偏置 近阈值逻辑 漏功耗减小 sub-threshold leakage gate-length biasing near-threshold logic leakage power reduction
  • 相关文献

参考文献17

  • 1Paul B C, Agarwal A, Roy K. Low-power design techniques for scaled technologies Integration[J]. The VLSI Journal, 2006, 39(2):64-89.
  • 2Gupta K, Raychowdhury A, Roy K. Digital computation in subthreshold region for ultralow-power operation: A device-circuit-architecture codesign perspective[J]. Pro- ceedings of the IEEE, 2010, 98(2):160-190.
  • 3Borkar S. Getting gigascale chips: Challenges and opportunities in continuing moore's law[J]. ACM Queue, 2003, 1(7):28-33.
  • 4Wang A, Calhoun B H, Chandrakasan A E Sub-threshold design for ultra low-power systems[M]. New York: Springer, 2006:12-102.
  • 5Bellaouar A, Elmasry M I. Low-power digital VLSI design circuits and systems[M]. Boston: Kluwer Academic Press, 1995.
  • 6Chang J, Pedram M. Energy minimization using multiple supply voltages[J]. IEEE Trans VLSI Syst, 1997, 5(4): 436-443.
  • 7Kim S, Papaefthymiou M C. Ture single-phase adiabatic circuitry[J]. Very Large Scale Integration (VLSI) Systems, 2001, 9(1):52-63.
  • 8Hu Jiangping, Xu Tiefeng, Li Hong. A Lower-power register file based on complementary pass-transistor adiabatic logic[J]. IEICE Trans on Information and Systems, 2005, 88(7): 1479-1485.
  • 9Dreslinski R G, Wieckowski M, Blaauw D, et al. Near-threshold computing: Reclaiming Moore's law through energy efficient integrated circuits[J]. Pro- ceedings of the IEEE, 2010, 98(2):253-266.
  • 10Markovic D, Wang C C, Alarcon L P, et al. Ultralow- power design in near-threshold region[J]. Proceedings ofthe IEEE, 2010, 98(2):237-252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部