期刊文献+

桁架结构多目标优化的微分演化算法 被引量:1

Differential evolution algorithm for truss structure multi-objective optimization
下载PDF
导出
摘要 为了解决带有约束的桁架结构的多目标优化问题,本文采用了一种基于微分演化的多目标优化(DEMO)方法。DEMO方法采用多目标优化进化算法中Pareto和拥挤距离排序机制,并保留了DE算法的优点。为了验证DEMO算法的可行性和有效性,对经典桁架进行尺寸优化,并与其他优化方法进行了比较,数值结果表明DEMO算法性能比其他算法要好,其所得的解具有更好的多样性、均匀性和收敛性。 In order to solve the multi-objective optimization of truss structures with constrains,a new approach to multi-objective optimization based on differential evolution(DEMO) was adopted in this paper.DEMO adopted the mechanisms of Pareto based ranking and crowding distance sorting which used by evolutionary algorithms for multi-objective optimization,and preserved the advantages of differential evolution(DE).Classical truss sizing optimization problems are solved to demonstrate the feasibility and effectiveness of the DEMO algorithm,and the results are compared with other optimization methods.The results indicate that the DEMO provides better performance in the diversity,the uniformity and the convergence of the obtained solution than other methods.
出处 《燕山大学学报》 CAS 2013年第3期265-269,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(51178337 50708076) 科技部国家重点实验室基础研究资助项目(SLDRCE11-B-01)
关键词 微分演化 多目标优化 非支配排序 桁架结构 differential evolution multi-objective optimization non-dominated sorting truss structure
  • 相关文献

参考文献15

  • 1郭俊,桂卫华,阳春华.改进差分进化算法在铝电解多目标优化中的应用[J].中南大学学报(自然科学版),2012,43(1):184-188. 被引量:7
  • 2Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strengthPareto evolutionary algorithm [M] //Giannakoglou K, Tsahalis DT, P6riaux J, et al.. Evolutionary Methods for Design, Optimizationand Control with Applications to Industrial Problems. Berlin:Springer-Verlag, 2002: 95-100.
  • 3Abido M A. Two level of nondominated solutions approach to mul-tiobjective particle swarm optimization [C] //Thierens D, BeyerHG,Bongard J, etal.. Proc of the Genetic and Evolutionary Com-putation Conf. New York: ACM Press, 2007: 726-733.
  • 4Gong M, Jiao L, Du H, etal.. Multi-objective immune algorithmwith non-dominated neighbor-based selection [J]. EvolutionaryComputation, 2008,16 (2): 225-255.
  • 5尚荣华,焦李成,马文萍.免疫克隆多目标优化算法求解约束优化问题[J].软件学报,2008,19(11):2943-2956. 被引量:17
  • 6DebK, Agarwal S, Pratap A, et al.. A fast elitist multi-objectivegenetic algorithm:NSGA-II [J]. IEEE Transactions on EvolutionaryComputation, 2002,6 (2): 182-197.
  • 7Luh G C, Chueh C H. Multi-objective optimal design of trussstructure with immune algorithm [JJ. Computers and Structures,2004,82 (11/12): 829-844.
  • 8Madavan N K. Multi-objective optimization using a Pareto differ-ential evolution approach [C] //Proceedings of the 2002 Congresson Evolutionary Computation, 2002: 1145-1150.
  • 9Adeyemo J A, Otieno F A. Multi-objective differential evolutionalgorithm for solving engineering problems [J] Journal of AppliedSciences, 2009,9 (20): 3652-3661.
  • 10RobidT,Filipi6 B. DEMO: differential evolution for multiobjectiveoptimization [J]. Proceedings of the 3rd International Conferenceon Evolutionary MultiCriterion Optimization, 2005,520-533.

二级参考文献19

  • 1刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150. 被引量:16
  • 2李界家,马驰,郭宏伟,马斌.基于铝电解过程的神经网络模型预测控制的应用研究[J].轻金属,2007(3):25-28. 被引量:8
  • 3Kvande H,Haupin W.Inert anode for aluminium smelting:Energy balances and environment impact[J].JOM,2001,53(2):29-33.
  • 4WANG Dian-qing,ZHANG Zhong-ren.Aluminum three-seeking control of the feasibility of technology[J].Journal ofMaterials and Metallurgy,2010(9):140-142.
  • 5Coello C A.Evolutiomry multi-objective optimization:ahismrical view of the field[J].IEEE Cxmaputatioml IntelligenceMagazine,2006,1(1):28-36.
  • 6Wang Y,Cai Z,Zhou Y,et al.An adaptive t radeoff model forconst rained evolutionary optimization[J].IEEE Trans onEvolutionary Computation,2008,12(1):80-92.
  • 7Coello C A.Evolutionary multi-objective optimization:ahistorical view of the field[J].IEEE Computational IntelligenceMagazine,2006,1(1):28-36.
  • 8Rainer S,Price K.Differential evolution—A simple and efficientheuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 9Abbass H A,Sarker R.The pareto differential evolutionalgorithm[J].International Journal on Artificial IntelligenceTools,2002,11(4):531-552.
  • 10Parsopoulos K E,Tasoulis D K,Pavlidis N G,et al.Vectorevaluated differential evolution for multi-objective optimization[C]//Proceedings of IEEE Congress on EvolutionaryComputation.Portland,2004:204-211.

共引文献22

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部