期刊文献+

一维定常对流扩散方程非均匀网格上的高阶紧致差分格式 被引量:3

A high-order compact difference scheme for solving the 1D steady convection diffusion equation on nonuniform grids
下载PDF
导出
摘要 基于泰勒级数展开法提出了求解一维定常对流扩散方程非均匀网格上的高精度紧致差分格式,该格式具有3~4阶精度.通过对边界层和大梯度问题的数值实验,验证了该方法的精确性和有效性.与中心差分格式和其它几种格式的计算结果进行比较,结果表明,本文格式的计算结果要比已有的几种格式的计算结果更为精确. A high-order compact difference scheme for solving the one dimensional(1D) steady convection diffusion equation on nonuniform grids is proposed based on Taylor series expansion. The accuracy of the scheme is the third- to fourth-order. Numerical experiments for some problems with boundary layers are conducted to validate the accuracy and the effectiveness of the present method. By comparing the computed results of the present scheme with that of the central difference scheme and the others schemes in the literature, it is found that the results computed by the present method is more accurate than that computed by some existed methods.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期16-24,33,共10页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11061025) 霍英东教育基金会高等院校青年教师基金资助项目(121105) 宁夏自然科学基金资助项目(NZ12123) 宁夏大学自然科学基金资助项目(2R1120)
关键词 一维定常对流扩散方程 非均匀网格 高阶紧致差分格式 边界层问题 1D steady convection diffusion equation nonuniform grids high-order compact differencescheme boundary layer problems
  • 相关文献

参考文献8

二级参考文献30

共引文献26

同被引文献29

  • 1王彩华.一维对流扩散方程的一类新型高精度紧致差分格式[J].水动力学研究与进展(A辑),2004,19(5):655-663. 被引量:21
  • 2李桂波,李明军,高智.对流扩散方程的变步长摄动有限差分格式[J].水动力学研究与进展(A辑),2005,20(3):293-299. 被引量:13
  • 3LINB T. Layer-adapted meshes for convection-diffusion problems [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(9): 1061-1105.
  • 4SCARBOROUGH J B. Numerical mathematical analysis[M]. Balti- more: The Johns Hopkins Press, 1955.
  • 5SPOTZ W F. Formulation and experiments with high-order compact schemes for nonuniform grids[J]. International Journal of Numerical Methods for Heat and Flow, 1998, 8(3) : 288-303.
  • 6LELE S K. Compact finite difference schemes with spectral-like resolution [ J ]. Journal of Computational Physics, 1992, 103: 16-42.
  • 7CHU P C, FAN C W. A three-point combined compact difference scheme [ J ]. Journal of Computational Physics, 1998, 140: 370-399.
  • 8GAMET L, DUCROS F, NICOUD F, et al. Compact fimte difference schemes on non-uniform meshes: Application to direct numerical simulations of compressible flows [ J ]. Int J Numer Meth Fluids, 1999, 29: 159-191.
  • 9ZHANG Pei-guang, WANG Jian-ping. A predictor- corrector compact finite difference scheme for Burgers' equation[J]. Appl Math Comput, 2012, 219.. 892-898.
  • 10COLE J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Appl Math Comput, 2005, 170: 859-904.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部