期刊文献+

基于增广Lagrange-Hopfield神经网络的分布式电源最优配置的研究 被引量:1

Research on Distributed Power Source Optimum Location Based on Augmented Lagrangian-hopfield Neural Network
下载PDF
导出
摘要 为了解决配电网中分布式电源的最优配置问题,首先构建了以总体投资费用和购电费用为主体的目标函数,并且建立了配电网潮流、节点电压、电流和有功功率的约束方程,提出了一种基于增广拉格朗日松弛法作为其能量函数的连续型Hopfield神经网络来计算配电网中配置分布式电源的位置和容量。最后通过IEEE33配电网系统,分析了在目标函数中不同的投资费用和购电费用权重时,分布式电源的配置位置对系统网络损耗和有功损耗影响,验证该算法具有可行性、操作简单和计算速度快的特点。 In order to solve optimum location problem of distributed power source, an objective function combined total investment cost with power purchase cost was built firstly. Then established constraint equations of distribution system power flow, nodes voltage and real power, and proposed continuous hopfield neural network which used augmented lagrangian relaxation as its energy function to compute the location and capacity of distributed source in the distributed power network. In the end, making use of IEEE 33 standard distribution systems to analyze different weights of investment cost and power purchase cost, found out different locations had effects on power loss in the systems and real power loss. Verified the presented algorithm had the properties of teasibility, simplicity processing and fast computing speed.
机构地区 莱芜供电公司
出处 《电力科学与工程》 2013年第6期30-34,共5页 Electric Power Science and Engineering
关键词 增广Lagrange-Hopfield神经网络 能量函数 分布式电源 最优配置 augmented lagrangian-hopfield neural network energy function distributed power source optimum location
  • 相关文献

参考文献11

  • 1Kuri B. Distributed generation planning in the deregulated e-lectricity supply industry [ C ]. Denver: IEEE Power Engi- neering Society General Meeting, 2004. 2085 -2089.
  • 2Hammons T J. Integrating renewable energy sources into eu- ropean grids [ J ]. International Journal of Electrical Power & Energy Systems, 2008, 30 (8) : 462 - 475.
  • 3韦钢,吴伟力,胡丹云,李智华.分布式电源及其并网时对电网的影响[J].高电压技术,2007,33(1):36-40. 被引量:193
  • 4杨琦,马世英,宋云亭,唐晓骏.分布式电源规划方案综合评判方法[J].电网技术,2012,36(2):212-216. 被引量:26
  • 5Coello C A C, Pulido G T, Lechuga M S. Handling multi- ple objectives with particle swarm optimization [ J ]. IEEE Trans on Evolutionary Computation, 2004, 8 ( 3 ) : 256 - 279.
  • 6Ajay-D-Vimai Raj P, Senthilkumar S, Raja J, et al. Opti- mization of distributed generation capacity for line loss reduc- tion and voltage profile improvement using PSO [ J ]. Jour- nal of Electrical Engineering, 2008, 10 (2): 41-48.
  • 7贺海,吕娟,王磊.改进粒子群算法在分布式电源优化配置中的应用研究[J].电力科学与工程,2013,29(2):21-25. 被引量:15
  • 8Park J H, Kim Y S, Eom I K, et al. Economic load dis- patch for piecewise quadratic cost function using Hopfield neural network [J]. IEEE Trans. Power Syst., 1993, 8 (3) : 1030 - 1038.
  • 9Lin E, Viviani G L. Hierarchical economic dispatch for piecewise quadratic cost functions [ J ]. IEEE Trans. Pow- er Apparatus Syst. , 1984, 103 (6) : 1170- 1175.
  • 10康忠健,肖阳.含分布式电源的配电网自适应保护算法研究[J].电网与清洁能源,2013,29(2):1-4. 被引量:6

二级参考文献69

共引文献238

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部