期刊文献+

快速的自举鲁棒点匹配算法

A Fast Bootstrap Robust Point Matching Algorithm
下载PDF
导出
摘要 鲁棒点匹配算法中的退火温度是按常数比率降低的,它导致运行时间长。文章基于对应关系矩阵的熵和退火温度是同时变化的现象,提出采用熵来建模退火温度,由此得到一种新的算法。尝试了两种实现方案,实验表明它们都比原算法高效,其中一种实现方案的鲁棒性和配准精度都非常接近原算法。 The annealing temperature in the robust point matching (RPM) method [ 1 ] is decreased by a fixed rate, which leads to long running time. Based on the observation that the entropy of correspondence matrix and annealing temperature change in accordance with each other, we propose in this paper using the entropy to model annealing temperature, which leads to a new point matching method. We tried two variants of this method. Experimental results showed that both of them are much more efficient than RPM, while one of them also well preserves the robustness and accuracy of RPM.
作者 连玮
出处 《长治学院学报》 2013年第2期1-6,共6页 Journal of Changzhi University
基金 山西省青年科技研究基金(2012021015-2) 山西省高校科技研究开发项目(20111128)
关键词 弹性点匹配 确定性退火 收敛性 non-rigid point matching deterministic annealing convergencenon-rigid point matching deterministic annealing convergence
  • 相关文献

参考文献19

  • 1Chui, H., R.a ing algorithm Computer Vi ngarajan, A.: A new point match for non-rigid registration [J ]. sion and Image Understanding, 2003, (89): 114-141.
  • 2Veltlcamp, P,..C., Hagedoorn, M.: State of-the art in shape matching [J]. Principles of-visual in- formation retrieval, Springer-Verlag, London, UK. 2001.
  • 3Besl, PJ., Mcl<dy, N.D.: A method for regis- tration of"3-d shapes [J]. IEEE Trans. PAMI, 1992, (14) : 239-256.
  • 4Zhang, Z.: Iterative point matching for registra- tion offreeform curves and surfaces [J]. lnternat. J. Comput. Vision, 1994,(13):119-152 1.
  • 5Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration [C]. ECCV, 2004.
  • 6Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of Gaussians [ C]. ICCV, 2005.
  • 7Sandhu, R., Dambreville, S., Tannenbaum, A.: Particle filtering for registration of-2d and 3d point sets with stochastic dynamics [C]. CVPR, 2008.
  • 8Li, H., Shen, T., Huang, X.: Global opti- mization for alignment of'generalized shapes [C]. CVPP,., 2009.
  • 9Sofka, M., Yang, G., Stewart, C.V.: Simulta- neous covariance driven correspondence (cdc) and transformation estimation in the expectation maximization framework. CVPR, 2007.
  • 10Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts [J]. IEEE Trans. PAMI 2002, (24) :509-522.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部