期刊文献+

聚变堆氚系统设计中的一些重要问题研究(Ⅱ)

Innovative researches on some important problems in fusion reactor tritium system design (Ⅱ)
下载PDF
导出
摘要 在文献[1]中,计算了FEB-E聚变堆PFC材料内的氚滞留量、堆系统总的氚投料量、启动运行开始阶段的氚坑深度和氚坑时间大小。这里将讨论在ITER的TBM氚增殖包层内固体氚增殖剂中的氚如何高效率地被载氚气体带出并且以高效率地提取回收。本部分将进行创新的探索性研究并且提出某些减少氚滞留量和改善氚提取回收效率的新方案,例如:基于氘饱和的海绵效应;第一壁表面建立氘和铍的伴同沉积层;基于在低频外电场作用下载氚气分子和硅酸锂颗粒电极化旋转催化同位素交换速率的增强载氚气提取氚效率"SPB方法"。 In part one published in the last issue, the tritium retention and the total tritium inventory in PFC materials of FEB-E fusion reactor had been calculated. The tritium well depth, tritium well time during the FEB-E fusion reactor start-up and initial operation phase had been obtained. In this part, how to improve tritium recovery efficiency in the ITER TBM solid breeder blanket with using purge gas has been discussed. Some new innovative schemes for reducing tritium retention and improving tritium recovery efficiency are proposed. Such as, sponge mechanism based on deuterium saturated PFC materials; deuterium and beryllium co-deposition layer created on first wall surface; SPB scheme for enhancing tritium recovery efficiency of purge gas in ceramic breeder blanket based on the electrical polarization rotations catalyzing isotope exchange rate enhancement resulted from applied low frequency electric-field, of Li4Si04 grain and purge gas molecular particles and so on, are exolored.
作者 邓柏权
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2013年第2期107-112,共6页 Nuclear Fusion and Plasma Physics
关键词 海绵效应 氘和铍的伴同沉积 电极化旋转 催化同位素交换速率 SPB方法 Sponge mechanism Deuterium and beryllium co-deposition Electrical polarization rotation catalyzed isotope exchange rate SPB scheme
  • 相关文献

参考文献3

二级参考文献29

  • 1冯开明.ITER实验包层计划综述[J].核聚变与等离子体物理,2006,26(3):161-169. 被引量:52
  • 2陈晓军,王和义,罗阳明,冯开明,温兆银.CH HCSB TBM中固体氚陶瓷增殖剂微球研究进展[J].核聚变与等离子体物理,2006,26(3):210-216. 被引量:20
  • 3郝嘉琨.聚变堆材料[M].北京:化学工业出版社,2006:137.
  • 4Roux N, Tanaka S, Johnson C, et al. Ceramic breeder material development [J]. Fusion Engineering and Design, 1998, 41: 31-38.
  • 5Kleykamp H. Chemical interactions in the EXOTIC-7 experiment [J]. J. Nucl. Mater., 1999, 273: 171-176.
  • 6Piazza G, Erbe A, Rolli R, et al. Post-irradiation examinations of Li4SiO4 pebbles irradiated in the EXOTIC-8 experiment [J]. J. Nucl. Mater., 2004, 329-333: 1260--1265.
  • 7Kinjyoa T, Nishikawaa M, Yamashitaa N, et al. Chemical form of released tritium from solid breeder materials under the various purge gas conditions [J]. Fusion Engineering and Design, 2007, 82:2147-2151.
  • 8Munakata K, Shinozaki T, Inoue K, et al. Tritium release from lithium silicate pebbles produced from lithium hydroxide [J]. Fusion Engineering and Design, 2008, 83: 1317-1320.
  • 9Munakata K, Shinozaki T, Inoue K, et al. Tritium release from lithium orthosilicate pebbles deposited with palladium [J]. J. Nucl. Mater., 2009, 386-388:1091 -1094.
  • 10Tanaka S, Terai T, Yamawaki M. Study on tritium release from solid breeding materials using the research reactor "YAYOI" [J]. Nucl. Energy, 1998, 32(1-2): 71-95.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部