期刊文献+

基于附加Runge-Kutta方法的高精度气相爆轰数值模拟 被引量:1

Additive Runge-Kutta Methods for Accurate H_2-O_2-Ar Detonation Simulation
原文传递
导出
摘要 多组分反应欧拉方程是气相爆轰的控制方程,其源项存在刚性。应用显式格式求解,由于格式稳定性条件的限制,时间步长远小于CFL(Courant-Friedrichs-Lewy)条件得出的时间步长,给求解带来很大困难。引入一种IMEX(Implicit-Explicit)型附加Runge-Kutta算法,对非刚性对流项进行显式处理,源项用半隐式格式处理,整体具有高精度和L-稳定性,并进行算例考核。在此基础上,利用基元反应模型对气相爆轰问题进行了数值研究。结果表明,该算法能够很好地处理源项引起的刚性问题,准确地捕捉和描述爆轰波的复杂结构和典型特征,同时也能够很好地模拟爆轰波在楔面上的马赫反射问题。 We report here the additive Runge-Kutta methods for computing reactive Euler equations with a stiff source term, and in particular, their applications in gaseous detonation simulations. The source term in gaseous detonation is stiff due to the presence of wide range of time scales during ther- mal-chemical non-equilibrium reactive processes and some of these time scales are much smaller than that of hydrodynamic flow. The high order, L-stable, additive Runge-Kutta methods proposed in this paper resolved the stiff source term into the stiff part and non-stiff part, in which the stiff part was solved implicitly while the non-stiff part was handled explicitly. The proposed method was successfully applied to simulate the gaseous detonation in a stoichiometric H2-O2-Ar mixture based on a detailed el- ementary chemical reaction model comprised of 9 species and 19 elementary reactions. The results showed that the stiffly-accurate additive Runge-Kutta methods can well capture the discontinuity,and accurately describe the detonation complex wave configurations such as the triple wave structure and cellular pattern.
出处 《高压物理学报》 CAS CSCD 北大核心 2013年第2期230-238,共9页 Chinese Journal of High Pressure Physics
基金 国家重点基础研究计划(2010CB832706) 国家自然科学基金(11032002 11072025)
关键词 源项 附加Runge—Kutta方法 刚性 气相爆轰 source term additive Runge-Kutta methods stiffness gaseous detonation
  • 相关文献

参考文献2

二级参考文献25

  • 1NING Jianguo1 & CHEN Longwei1,2 1. National Key Laboratory of Protection and Control of Explosive Disaster, Beijing Institute of Technology, Beijing 100081, China,2. The Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China Correspondence should be addressed to Ning Jianguo.Fuzzy interface treatment in Eulerian method[J].Science China(Technological Sciences),2004,47(5):550-568. 被引量:40
  • 2北京工业学院八系编著.爆炸及其作用(下)[M].北京:国防工业出版社.1979.
  • 3[1]HARTEN R J. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49:231-303.
  • 4[2]GODUNOV S K. Finite difference method for numerical computational of discontinuous solutions of the equation of fluid dynamics[J]. Matematicheskii Sbornik, 1959, 47:271-306.
  • 5[3]VAN LEER B. Toward the ultimate conservative difference scheme: a second-order scheme to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
  • 6[4]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes I[J]. Journal of Computational Physics, 1988, 77:439-471.
  • 7[5]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II[J]. Journal of Computational Physics, 1989, 83:32-78.
  • 8[6]SCHOFFEL S U, Ebert F. Numerical analysis concerning the spatial dynamics of an initially plane gaseous ZND detonation[J]. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1988,114:3-31.
  • 9[7]GAKI S, FUJIWARA T. Numerical analysis of two-dimensional nonsteady detonations[J]. AIAA Journal ,1978, 16:73-77.
  • 10[8]LEFEBVRE M H. Simulation of cellular structure in a detonation wave. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1991,153:64-77.

共引文献18

同被引文献11

  • 1张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2006.
  • 2Yanenko N N. The Method of Fractional Steps EM:. New York/Berlin:Springer-Verlag, 1971.
  • 3Oran E S,Boris J P. Numerical Simulation of Reactive Flow [M]. New York: Elsevier Science Publishing, 1987.
  • 4Zhong X L. Additive semi-implicit Runge-Kutta methods tor computing high-speed nonequilibrium reactive flows [J]. J Comput Phys,1996,128(1) : 19-31.
  • 5Xia Y,Xu Y,Shu C W. Efficient time discretization for local discontinuous Galerkin methods [J]. Discrete and Con- tinuous Dynamical Systems-Series B, 2007,8 (3) : 677-693.
  • 6Kennedy C A,Carpenter M H. Additive Runge-Kutta schemes for convection-diffusion-reaction equations [J]. Appl Num" Math,2003,44:139-181.
  • 7Jiang G S,Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996,126 (1) :202- 228.
  • 8Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes [J].J Comput Phys, 1994,115 ( 1 ) : 200- 212.
  • 9Shu C W,Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes [J]. J Comput Phys, 1988,77(2) : 439-471. Shu C W,Osher S. Efficient implementation of essentially non oscillatory shock capturing schemes 11 [J]. J Corn- put Phys,1989,83(1) :32-78.
  • 10Shu C W,Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes [J]. J Comput Phys, 1988,77(2) : 439-471.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部