期刊文献+

加权估计方程用于缺失数据的处理 被引量:1

下载PDF
导出
摘要 在医学研究过程中缺失数据现象是普遍存在的,目前实际应用中对缺失值处理的方法主要采用缺失值的删失以及单一填补。随着统计软件相关程序的实现,更有效的缺失值处理方法逐渐引起研究者的关注,如基于多重填补的方法,基于参数似然的方法以及基于加权估计的方法。J。weighted estima-ting equations(WEE)法是加权估计法中的一种,是广义估计方程(gemeralized estimating equations,GEE)方法的推广,被认为估计效率高,稳健性好,尤其在模型假定错误的情况下,仍可以获得更接近真实值的无偏估计。目前,国际对于缺失数据处理方法的理论应用研究热点多为WEE法,而国内相对集中于多重填补的研究,对于WEE法的研究应用相对较少。因此本文对WEE法的理论框架进行详细介绍。
出处 《中国卫生统计》 CSCD 北大核心 2013年第3期435-437,共3页 Chinese Journal of Health Statistics
  • 相关文献

参考文献19

  • 1Shih W. Problems in dealing with missing data and informative censo-ring in clinical trials. Current Controlled Trials in Cardiovascular Medi-cine,2002,3:4.
  • 2Abraham W,Russell D. Missing data: a review of current methods andapplications in epidemiological research. Current Opinion in Psychiatry,2004,17(4):315-321.
  • 3Selvin S. Statistical analysis of epidemiologic data. 2004, Oxford; NewYork : Oxford University Press.
  • 4Geert Molenberghs, Kenward MG. Missing Data in Clinical Studies.Paediatric and Perinatal Epidemiology,2007,21(6) :552-554.
  • 5唐健元,杨志敏,杨进波,黄钦,吴春芳,冯毅.临床研究中缺失值的类型和处理方法研究[J].中国卫生统计,2011,28(3):338-341. 被引量:28
  • 6Little RJA,Rubin DB. Statistical analysis with missing data. Hoboken,NJ:J Wiley & Sons,2002.
  • 7Graham JW. Missing data analysis : making it work in the real world.Annu Rev Psychol ,2009,60:549-576.
  • 8Caroline Beunckens, Cristina Sotto, Geert Molenberghs. A simulationstudy comparing weighted estimating equations with multiple imputa-tion based estimating equations for longitudinal binary data. Computa-tional Statistics &Data Analysis,2008,52(3) :1533-1548.
  • 9Lan Kong, Jianwen Cai, Sen PK. Weighted estimating equations forsemiparametric transformation models with censored data from a case-cohort design, Biometrika,2004,94(2) ;305-319.
  • 10Michelle Shardell, Miller RR. Weighted estimating equations for longi-tudinal studies with death and non - monotone missing time - de-pendent covariates and outcomes. Statistics in Medicine, 2008,27 (7):1008-1025.

二级参考文献44

共引文献64

同被引文献6

  • 1Abraham W. T. , Russell D. W. Missing data: a review of current meth- ods and applications in epidemiological research. Curr Opin Psychiatry, 2004,17:315-321.
  • 2Siddiqui O, Hung HM. MMRM vs. LOCF:a comprehensive comparison based on simulation study and 25 NDA datasets. J Biopharm Star,2009, 19:227.
  • 3Donald H, Robin J, Hakan D. Analysis of binary outcomes with missing data:missing = smoking, last observation carried forward, and a little multiple imputation. Methods and techniques ,2007,10 : 1565-1569.
  • 4Long JS. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA : Sage Publications, 1997:42.
  • 5Little RJA, Rubin DB. Statistical Analysis with Missing Data, 2nd edn. New York:Wiley ,2002.
  • 6帅平,李晓松,周晓华,刘玉萍.缺失数据统计处理方法的研究进展[J].中国卫生统计,2013,30(1):135-139. 被引量:40

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部