期刊文献+

基于坐标表象的脊波变换研究 被引量:1

Ridgelet transform research based on the coordinate representation
原文传递
导出
摘要 在小波变换量子力学机制的启发下,通过采用Fock空间里双模坐标本征态改写经典Ridgelet变换,定义了量子光学态的Ridgelet变换.然后利用IWOP技术给出不对称积分算符的显式,并推导出了两个有用的双模算符正规乘积公式.在此基础上,通过选取双模"墨西哥帽"母小波函数,分析了相干态、特殊压缩相干态、中介纠缠态表象的Ridgelet变换. Inspired by the wavelet transform in quantum mechanics, we define the new Ridgelet transform for quantum optics by rewriting the classic Ridgelet transform via the two-mode coordinate representation in Fock space. Furthermore, we give the explicit form of the asymmetric operator's integral and derive two Useful formulas for the normal ordering of the two-mode operator with the help of the technique of integration within an ordered product (IWOP) of operators. By choosing the two-variable Mexican hat's mother wavelet function, we analyse the Ridgelet transforms of the coherent state, special squeezed coherent state, intermediary entangled state on the basis of the theories we have mentioned.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第13期263-268,共6页 Acta Physica Sinica
基金 安徽高校省级自然科学研究项目(批准号:KJ2011Z359 KJ2012Z383)资助的课题~~
关键词 IWOP技术 RIDGELET变换 相干态 the IWOP technique, Ridgelet transform, coherent state
  • 相关文献

参考文献16

  • 1Candes E J 1999 Ridgelets and Their Derivatives Representation of Images with Edges Department of Statistics, Stanford University, SaintMalo Proceedings and Larry L. Schumaker( eds), p 1-10.
  • 2Starck J L, Candes E J, Donoho D L 2002 Trans. Image Processin 11 670.
  • 3Starck J L, Donoho D L, Candes E J 2003 Astronomy & Astrophysics 398785.
  • 4Chuang I L, Nielsen M A 2000 Quantum computation and quantum information (Cambridge University Press, Cambridge).
  • 5Fan H Y, Lu H L 2006 Optics Commun 258 51.
  • 6Fan H Y, Lu H L 2006 Opt. Lett. 31407.
  • 7Song J, Fan H Y 2010 Chin. Phys. Lett. 27024210.
  • 8Fan H Y, Lu H L 2007 Opt. Lett. 32554.
  • 9Fan H Y, Liu S G 2007 Opt. Lett. 32 1507.
  • 10Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 147.

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部