期刊文献+

Strong flux pinning enhancement in YBa_2Cu_3O_(7-x) films by embedded BaZrO_3 and BaTiO_3 nanoparticles

Strong flux pinning enhancement in YBa_2Cu_3O_(7-x) films by embedded BaZrO_3 and BaTiO_3 nanoparticles
下载PDF
导出
摘要 YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparticles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparticles had random orientations and were distributed stochastically in the YBCO matrix. The unique combined microstructure enhances the critical current density (Jc) of the BaZrO3/BaTiO3 doped-YBCO films, while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. These results indicate that BaZrO3 and BaTiO3 nanoparticles provide strong flux pinning in YBCO films. YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparticles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparticles had random orientations and were distributed stochastically in the YBCO matrix. The unique combined microstructure enhances the critical current density (Jc) of the BaZrO3/BaTiO3 doped-YBCO films, while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. These results indicate that BaZrO3 and BaTiO3 nanoparticles provide strong flux pinning in YBCO films.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期484-488,共5页 中国物理B(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.51002149 and 51272250) the National Basic Research Program of China(Grant No.2011CBA00105)
关键词 BaZrO3 and BaTiO3 nanoparticles flux pinning metalorganic deposition using trifluoroacetates BaZrO3 and BaTiO3 nanoparticles flux pinning metalorganic deposition using trifluoroacetates
  • 相关文献

参考文献24

  • 1Larbalestier D C, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368.
  • 2Iijima Y, Tanabe N, Kohno O and Ikeno Y 1992 Appl. Phys. Lett. 60 769.
  • 3Dover R B, Gyorgy E M, Schneemeyer L F, Michell J W, Rao K V, Puzniak R and Waszczia J V 1989 Nature 342 55.
  • 4Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P and Holtzberg F H 1990 Phys. Rev. Lett. 65 1164.
  • 5Sauerzopf F M, Wiesinger H P, Kritscha W, Weber H W, Crabtree G W and Liu J Z 1991 Phys. Rev. B 43 3091.
  • 6Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A and Obradors X 2009 Appl. Phys. Lett. 94 172513.
  • 7Polat ?, Ertugrul M, Thompson J R, Leonard K J, Sinclair J W, Paranthaman M P, Wee S H, Zuev Y L, Xiong X, Selvamanickam V, Christen D K and Aytug T 2012 Supercond. Sci. Technol. 25 025018.
  • 8Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R and Civale L 2009 Nature Mater. 8 398.
  • 9Engel S, Thersleff T, Hühne R, Schultz L and Holzapfel B 2007 Appl. Phys. Lett. 90 102505.
  • 10Varanasi C V, Barnes P N, Burke J, Brunke L, Maartense I, Haugan T J, Stinzianni E A, Dunn K A and Haldar P 2006 Supercond. Sci. Technol. 19 L37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部