期刊文献+

Fractional Fourier transform of Lorentz-Gauss vortex beams 被引量:3

Fractional Fourier transform of Lorentz-Gauss vortex beams
原文传递
导出
摘要 An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge. An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第8期1487-1494,共8页 中国科学:物理学、力学、天文学(英文版)
基金 the National Natural Science Foundation of China (Grant Nos. 10974179 and 61178016) Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090073) the Key Project of the Education Commission of Zhejiang Province of China (Grant No.Z201120128)
关键词 分数傅里叶变换 洛伦兹 光束 涡旋 高斯 分数阶FOURIER变换 轨道角动量 FRFT Lorentz-Gauss vortex beam, fractional Fourier transform, orbital angular momentum density
  • 相关文献

参考文献32

  • 1Naqwi A, Durst F. Focus of diode laser beams: A simple mathematical model. Appl Opt, 1990,29: 1780-1785.
  • 2Yang J, Chen T, Ding G, et al. Focusing of diode laser beams: a partially coherent Lorentz model. Proc SPIE, 2008, 6824: 68240A.
  • 3Gawhary 0 E, Severini S. Lorentz beams as a basis for a new class of rectangular symmetric optical fields. Opt Commun, 2007, 269: 274-284.
  • 4Torre A, Evans W A B, Gawhary O E, et al. Relativistic Hermite polynomials and Lorentz beams. J Opt A-Pure Appl Opt, 2008, 10: 115007.
  • 5Gawhary 0 E, Severini S. Lorentz beams and symmetry properties in paraxial optics. J Opt A-Pure Appl Opt, 2006, 8: 409--414.
  • 6Zhou G. Focal shift of focused truncated Lorentz-Gauss beam. J Opt Soc Am A, 2008, 25: 2594-2599.
  • 7Zhou G. Beam propagation factors of a Lorentz-Gauss beam. Appl Phys B, 2009, 96: 149-153.
  • 8Li J, Chen Y, Xu S, et al. Diffraction of Lorentz-Gauss beam in uniaxial crystals: Orthogonal to optical axis. Front Optoelectron China, 2010,3:292-302.
  • 9Zhao C, Cai Y. Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis. J Mod Opt, 2010,57: 375-384.
  • 10Du W, Zhao C, Cai Y. Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system. Opt Lasers in Eng, 2011, 49: 25-31.

同被引文献11

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部