期刊文献+

含氨基磺化聚芳醚酮砜质子交换膜的制备与性能 被引量:3

Preparation and Behavior of Sulfonated Poly(aryle ether ketone sulfone) Containing Amino Proton Exchange Membrane
下载PDF
导出
摘要 通过四元缩聚的方法合成了带有氨基的磺化度可控的磺化聚芳醚酮砜共聚物(Am-SPAEKS).采用红外光谱和核磁共振谱表征了Am-SPAEKS共聚物的结构.该共聚物膜具有较好的热性能、尺寸稳定性、较高的质子传导率和阻醇能力.在80℃时Am-SPAEKS-1膜的质子传导率达到0.0894 S/cm,而其甲醇渗透系数在25℃时为0.24×10-6cm2/s,低于相同温度下SPAEKS膜(0.87×10-6cm2/s)和Nafion膜(2×10-6cm2/s).结果表明,Am-SPAEKS膜能够满足质子交换膜燃料电池(PEMFC)的使用要求. The sulfonated poly(aryle ether ketone sulfone) with different sulfonation degree containing amino copolymers were prepared by polycondensation method. The FTIR and 1H NMR spectra of amino membrane-sulfonated poly(aryle ether ketone sulfone)(Am-SPAEKS) show that the amino groups are introduced into SPAEKS copolymers. The measured results show that the thermal stability, dimensional stability, resistance methanol performance and proton conductivities of Am-SPAEKS membranes are improved due to the introduction of amino groups. The proton conductivity of Am-SPAEKS-1 membrane reaches 0.0894 S/cm at 80℃. The methanol permeability coefficient of Am-SPAEKS-1 membrane is only 0.24×10^-6 cm^2/s, which is lower than that of pure SPAEKS(0.87×10^-6 cm^2/s) membrane and Nafion(2×10^-6 cm^2/s) membrane. All the results indicate that the Am-SPAEKS membranes are promising as proton exchange membranes for middle-high temperature proton exchange membrane fuel cells applications and direct methanol fuel cells(DMFCs).
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第7期1776-1781,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51273024) 吉林省教育厅项目(批准号:2012103)资助
关键词 氨基 磺化聚芳醚酮砜 质子电导率 质子交换膜 Amino Sulfonated poly (aryle ether ketone sulfone) Proton conductivity Proton exchangemembrane
  • 相关文献

参考文献15

  • 1Wang J.,Zhao C. J.,Lin H. D. , Zhang G.,Zhang Y.,Ni J.,Ma W. J. , Na H. , J. Power Sources,2011,196{13) , 5432-5437.
  • 2Li H. T.,Cui Z. M.,Zhao C. J.,Wu J.,Fu T. Z.,Zhang Y.,Shao K.,Zhang H. Q. , Na H. , Xing W.,J. Membr. Sci.,2009,343(1/2), 164-170.
  • 3Guo M. M. , Liu B. J. , Liu Z.,Wang L. F. , Jiang Z. H.,J. Power Sources, 2009,189(2),894901.
  • 4Zhao C. J. , Wang Z-,Bi D. W.,Lin H. D.,Shao K.,Fu T. Z.,ZKong S. L.,Na H.,Polymer, 2007, 45(11),3090-3097.
  • 5Jang W. , Sundar S.,Choi S.,Shul Y. G.,Han H.,J. Membr. Sci.,2006, 280( 1/2), 321-329.
  • 6Park H. S.,Kim Y. J.,Hong W. H.,Choi Y. S. , Lee H. K.,Macromolecules, 2005,38(6),2289-2295.
  • 7Kerres J.,Ullrich A.,Meier F.,Haring T. ’ Solid State Ionics, 1999,125(1-4),243-249.
  • 8Su Y. H. , Liu Y. L,,Sun Y- M. , Lai J. Y.,Wang D. M.,J. Membr. Sci.,2007,296( 1/2),21-28.
  • 9Lin H. D.,Zhao C. J.,Na H. , J. Power Sources, 2010,795(11), 3380-3385.
  • 10王哲,高洪成,赵成吉,常虹,张会轩,那辉.磺化聚芳醚酮砜/ZrO2复合型质子交换膜的制备与性能[J].高等学校化学学报,2011,32(8):1884-1888. 被引量:7

二级参考文献52

共引文献16

同被引文献22

  • 1邢丹敏,刘永浩,衣宝廉.燃料电池用质子交换膜的研究现状[J].电池,2005,35(4):312-314. 被引量:16
  • 2高鹏,郭晓霞,徐宏杰,房建华.非含氟型磺化聚合物质子交换膜材料的研究进展(上)[J].高分子通报,2007(4):1-13. 被引量:12
  • 3Hickner M. A. , Ghassemi H. , Kim Y. S. , Einsla B. R. , McGrath J. E. , Chem. Rev. , 2004, 104(10): 4587-4612.
  • 4Bae B. , Hoshi T. , Miyatake K. , Watanabe M. , Macromolecules, 2011, 44(10): 3884-3892.
  • 5Kobayashi T. , Rikukawa M. , Sanui K. , Solid State lonics, 1998, 106(314): 219-225.
  • 6Miyatake K. , Chikashige Y. , Higuchi E. , Watanabe M. , J. Am. Chem. Soc. , 2007, 129(13): 3879-3887.
  • 7Zhang H. W. , Shen P. K. , Chem. Rev. , 2012, 112(5): 2708-2832.
  • 8Pang J. H., ZhangH. B., LiX. F., LiuB. J., JiangZ. H., J. Power Sources, 2008, 184(1): 1-8.
  • 9Pang J. H. , Zhang H. B. , Li X. F. , Wang L. F. , Liu B. J. , Jiang Z. H. , J. Memb, Sci. , 2008, 318(1/2): 271-279.
  • 10庞金辉.侧链型磺化聚芳醚质子交换膜材料的制备及其性能研究,长春:吉林大学,2009.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部