期刊文献+

利用证据理论的图像融合方法 被引量:6

Image fusion method based on evidence theory
下载PDF
导出
摘要 在图像处理中,经常会碰到滤波器尺寸选择的问题,针对不同尺寸的目标需要选择与之对应尺寸的滤波器。在一幅图像中,可能存在多个不同尺寸的目标,或者在计算机自动目标检测系统中,不能确定目标的尺寸,这样就需要使用多种尺寸的滤波器进行滤波。如何将每种尺寸滤波器滤波后得到的最好结果融合到一起,是图像处理中的一种十分重要的关键技术。提出了一种基于改进的DS证据理论的融合方法,将多个不同尺寸的滤波结果进行融合。试验结果表明,该方法能够将图像中不同尺寸的目标很好的提取出来。 According to the targets with different sizes, different sizes of the filter modes need to be selected in image processing. Multiple targets with different sizes may be existed in an image, or the size of the target is not known at all in ATR system sometimes. Therefore, the filter with different sizes will be used to test in those situations. How to get the best results of the different filters together is a very important key technology in image processing. A method based on the improved DS evidence theory was presented. The experiment results indicate that the proposed method could well extract different sizes targets in an image.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第6期1642-1646,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(61175013) 湖北省科学基金创新群体项目(2012FFA046)
关键词 证据理论 图像融合 多尺寸 滤波 dempster-shafer evidence theory image fusion multi-scale filter mode
  • 相关文献

参考文献7

  • 1Lin W H, Lee J S, Chen C H, et al. A new multiscale- based shape recognition method[J]. Signal Processing, 1998, 65:103-113.
  • 2李宏贵,李兴国,罗正发.基于Gabor小波滤波器的红外图像多尺度识别[J].红外与毫米波学报,2000,19(2):113-116. 被引量:6
  • 3Pachai C, Zhu Y M, Grimaud J. A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI [J]. Computerized Medical Imaging and Graphics, 1998, 22(5): 399-408.
  • 4耿伯英,杨静宇.基于多分辨率分析及QFCM算法的图像分割方法研究[J].计算机研究与发展,2000,37(8):948-953. 被引量:7
  • 5Zhu Ym, Bentabet L, Dupuis O, et al. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy C means and spatial neighborhood information for image segmentation[J]. Opt Eng, 2002, 41(4): 760-770.
  • 6胡良梅,高隽,安良,胡勇.基于D-S证据理论的模糊聚类图像融合分割[J].合肥工业大学学报(自然科学版),2004,27(7):721-724. 被引量:2
  • 7Zhang Tianxu, Zuo Zhengrong, Zuo Zhen. Detection of sea surface small targets in infrared images based on multilevel filter and minimum risk bayes test [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(7): 907-918.

二级参考文献9

  • 1[2]Trivedi M M. Low-level segmentation of aerial images with fuzzy clustering[J]. IEEE Trans SMC, 1986,16(4):589-598.
  • 2[4]Klein L A. Sensor and data fusion concepts and applications[M]. Washington:SPIE Optical Engineering Press,1999.95-107.
  • 3[5]Zhu Y M,Bentabet L,Dupuis O,et al. Automatic determination of mass functions in Dempster-Shafer theory using fuzzy C-means and spatial neighborhood information for image segmentation[J]. Opt Eng,2002,41(4): 760-770.
  • 4Chen C H,Graphical Models Image Processing,1997年,5卷,59期,349页
  • 5张尧庭,多元统计分析引论,1997年
  • 6Ding Zheng,Proc of the 6th AFN JointSeminar,1996年,45页
  • 7Chen S Y,Computer Vision Graphics Image Processing,1993年,6卷,53期,457页
  • 8Fu K S,Pattern Recognition,1981年,13卷,1期,3页
  • 9安良,胡勇,胡良梅,孟玲玲.一种改进的模糊C-均值(FCM)聚类算法[J].合肥工业大学学报(自然科学版),2003,26(3):354-358. 被引量:13

共引文献12

同被引文献327

  • 1方敏,王宝树.基于进化策略的多传感器雷达辐射源目标识别方法[J].控制理论与应用,2004,21(2):165-168. 被引量:2
  • 2朱大奇,杨永清,于盛林.电子部件故障诊断的Dempster-Shafer信息融合算法[J].控制理论与应用,2004,21(4):659-663. 被引量:18
  • 3苗启广,王宝树.基于非负矩阵分解的多聚焦图像融合研究[J].光学学报,2005,25(6):755-759. 被引量:25
  • 4Schowengerdt R A. Reconstruction of multi-spatial, multi- spectral image data using spatial frequency content Photogramm[J]. Eng Remote Sens, 1980, 46(10): 1325-1334.
  • 5Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS Pan-Sharpening method [J]. IEEE Trans Geosei Rein Sens, 2010, 7(4): 746-750.
  • 6Ranchin T, Wald L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation [J]. Photogramm Eng Remote Sens, 2000, 66(1): 49-61.
  • 7Shi Zhenwei, An Zhenyu, Jiang Zhiguo. Hyperspectral image fusion by the similarity measure-based variational method[J]. Opt F.ng, 2011, 50(7): 077006.
  • 8Khan M M, Chanussot J, Alparone L. Pansharpening of hypersepctral images using spatial distortion optimization[C]// Int Conf on Image Processing, 2009: 2853-2856.
  • 9Lee Daniel D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 789-795.
  • 10王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246. 被引量:370

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部