期刊文献+

基于Kalman预测和点模式匹配的多目标跟踪 被引量:2

Multi-object tracking based on Kalman filtering prediction and point matching algorithm
下载PDF
导出
摘要 针对复杂背景下多运动目标的跟踪方法不能有效解决遮挡和高速运动等问题,提出一种Kalman预测与点模式匹配相结合的多目标跟踪方法。利用Kalman滤波预测目标在下一帧图像中的位置,以此位置为中心确定目标搜索区域,然后以点模式匹配进行搜索区域和目标模板进行匹配,有效地解决目标的旋转和轻微的遮挡问题。为了提高匹配速度和实时性,在点模式匹配中利用Kalman滤波对目标旋转角度的预测与修正;同时为了保证跟踪的鲁棒性、连续性及准确性,对目标模板的更新采用置信度二级判决门限。实验表明该方法具有较好的实时性,并能够有效地解决遮挡等问题。 Since the muti-object tracking method can not effectively overcome the target covering and high-speed movement in complex background, a new multi-object tracking algorithm based on point matching algorithm and Kalman filtering predic-tion is proposed. The possible position of a moving object in the next frame image is predicted by Kalman filtering. The position is regarded as the search center to determine the object seach region. The matching of the object template and the candidate re-gions is carried out with point matching algorithm to solve the problems of rotation and slight covering of the target. In order to improve the matching speed and real-time performance, the rotation angle of the target is predicted and corrected in the process of point matching by using Kalman filtering. The secondary judgment threshold of confidence is adopted for object template up-date to ensure the tracking robustness, continuity, stability and accuracy. The experimental results show that this approach has better real-time performance and can solve the covering problem effectively.
出处 《现代电子技术》 2013年第14期27-30,共4页 Modern Electronics Technique
基金 江苏省重大科技支撑与自主创新专项引导资金项目(BE2012731)
关键词 点模式匹配 卡尔曼滤波 置信度 跟踪算法 多目标跟踪 point matching Kalman filtering confidence tracking algorithm multi-object tracking
  • 相关文献

参考文献12

二级参考文献44

  • 1高勤,李志强,都学新.一种新型自适应卡尔曼滤波算法[J].现代雷达,2001,23(6):29-34. 被引量:18
  • 2乔玉龙,潘正祥,孙圣和.一种改进的快速k-近邻分类算法[J].电子学报,2005,33(6):1146-1149. 被引量:25
  • 3HARITAOGLU I, HARWOOD D, Davis L S. W-4: Real-time surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(8): 809-830.
  • 4NING H, TAN T, WANG L, et al. People tracking based on motion model and motion constraints with automatic initialization [J]. Pattern Recognition(S0031-3203), 2004, 37(7): 1423-1440.
  • 5COLLINS R, LIPTON A, KANADE T. A system for video surveillance and monitoring [R]. CMU-RI-TR-00-12, 2000.
  • 6SCHLEGEL C, ILLMANN J, JABERG H, et al. Vision based person tracking with a mobile robot[C]//Proceedings of the British Machine Vision Conference,. Southampton, UK: [s.n.], 1998, 2: 418-427.
  • 7JUNG B, SUKHATME G S. Detecting moving objects using a single camera on a mobile robot in an outdoor environment [C]// International Conference on InteiligentAutonomous Systems. Amsterdam, Netherlands: [s.n.], 2004: 980-987.
  • 8COMANICIU D, RAMESH V, MEER R Real-time tracking of non-rigid objects using Mean shifi[C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: [s.n.], 2000: 142-149.
  • 9KALMAN R E. A new approach to linear filtering and prediction problems [J]. Transaction of the ASME-Journal of Basic Engineering(S0021-9223), 1960(82): 35-45.
  • 10COMANICIU D, RAMESH V. Mean shift and Optimal Prediction for Efficient Object Tracking [J]. International Conference on ImageProeessing(S1522-4880), 2000, 3: 70-73.

共引文献80

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部