期刊文献+

交互式分割软件在肝脏局灶性病灶CT图像中的应用初探 被引量:3

Application of Interactive CT Image Segmentation Software in Focal Liver Lesions
下载PDF
导出
摘要 【目的】探讨交互式分割软件在肝脏局灶性病变CT图像中的应用。【方法】建立基于机器学习的肝脏局灶性病灶的交互式分割软件,通过学习判别式模型,对每一个像素进行病灶/非病灶的判别,从而实现区域分割。软件对PhotoshopCS4建立的理想单幅及序列ROI图像模型进行分割后,进而在肝脏局灶性病灶的CT图像上进行分割。【结果】理想的单幅及序列ROI模型中,前景随机选择不同灰度值及直径的ROI区时,均可精确分割出所有ROI区。单幅及序列CT图像分割中,前景分别选择肝癌消融后肿瘤完全灭活(低密度)及肝脏局灶性结节增生(高密度)病灶,软件正确分割病灶与周围正常组织区域;以Photoshop人工分割作为金标准,比较软件单独及序列分割的面积,差异无统计学意义(P>0.05)。【结论】基于判别模型学习的交互式分割软件初步成功应用于肝脏局灶性病灶CT图像的分割。 [Objective] To investigate the application of interactive segmentation software in CT images of focal liver lesions.[Methods] This software is based on machine learning interactive segmentation.It achieves region segmentation by learning discriminant model for each pixel in the lesion or non-lesion discrimination.Segmentation efficiency was tested on the ideal single or sequential (Religion of Interest) ROI model established by Photoshop CS4,and segmentation in CT images of focal liver lesions was performed.[Results] In ideal single or sequential ROI model,this software would accurately segment all ROI area despite the gray values and diameter of the ROI.In single and/or sequential CT images,once the ablation lesion was selected,the software would accurately segment the region of the lesion and surrounding normal tissue.Compared with Photoshop manual segmentation,there is no statistically significant difference between the gold standard and the single or sequential segmentation (P 〉 0.05).[Conclusion] This interactive segmentation software based on discriminant model learning has been preliminary successfully applied to CT images of focal liver lesions.
出处 《中山大学学报(医学科学版)》 CAS CSCD 北大核心 2013年第3期466-470,共5页 Journal of Sun Yat-Sen University:Medical Sciences
基金 国家自然科学基金(30901384) 广东省医学科研基金(B2012094)
关键词 计算机辅助诊断 交互式分割 肝脏局灶性病灶 CT computer assisted diagnosis interactive segmentation liver focal liver lesions CT
  • 相关文献

参考文献10

  • 1Van Ginneken B, Schaefer-Prokop CM, Prokop M.Computer-aided diagnosis: how to move from the laboratory to the clinic [ J ]. Radiology, 2011, 261 (3) : 719-732.
  • 2刘瑛,吴宁,唐威.计算机辅助诊断的三维体积测量技术在实性肺结节CT随诊中的价值[J].中华放射学杂志,2009,43(4):351-355. 被引量:8
  • 3司丽芳,刘小娟,杨开颜,史瑞华,蒋涛,翟仁友.计算机辅助检测系统对数字化乳腺X线图像检测的可重复性[J].中国医学影像技术,2011,27(12):2472-2475. 被引量:3
  • 4张惠茅,乔峰利,吕忠文.计算机辅助检测在CT结肠成像中的应用[J].中国医学影像技术,2010,26(1):171-174. 被引量:2
  • 5Yang W, Wang XL, Lin L. Interactive CT image segmentation with online discriminative learning [C]. Image Processing (ICIP), 2011 18th IEEE International Conference, 2011,425-428.
  • 6Beichel R, Bornik A, Bauer C, et al. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods [J]. Med Phys, 2012, 39(3) : 1361-1373.
  • 7Zhang X, Tian J, Xiang D, et al. Interactive liver tumor segmentation from ct scans using support vector classification with watershed [C]. Conf Proc IEEE Eng Med Biol Soc, 2011, 6005-6008.
  • 8Boykov YY, Jolly MP. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images [C]. 2001, Proceedings Eighth IEEE International Conference, 2011, 105-112.
  • 9Esneauh S, Hraiech N, Delabrousse E, et al. Graph cut liver segmentation for interstitial ultrasound therapy [ C ]. Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE, 2007, 5247-5250.
  • 10Caselles V, Kimmel R, Sapiro G. Geodesic active contours [C]. Computer Vision, Fifth International Conference, 1995, 694-699.

二级参考文献18

  • 1Herder G J, Golding RP, Hoekstra OS, et al. The performance of ^18 F-fluomdeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur J Nucl Med Mol Imaging,2004, 31 : 1231-1236.
  • 2Swensen SJ, Viggiano RW, Midthun DE, et al. Lung nodule enhancement at CT : muhicenter study. Radiology, 2000, 214 : 73-80.
  • 3Yankelevitz DF, Reeves AP, Kostis WJ, et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation. Radiology, 2000, 217: 251-256.
  • 4Lillington GA, Caskey CI. Evaluation and management of solitary and multiple pulmonary nodules. Clin Chest Med, 1993, 14: 111-119.
  • 5Revel MP, Lefort C, Bissery A, et al. Pulmonary nodules: preliminary experience with three-dimensional evaluation. Radiology, 2004, 231: 459-466.
  • 6Revel MP, Merlin A, Peyrard S, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. AJR, 2006, 187 : 135-142.
  • 7Nakajima R, Yokose T, Kakinuma R, et al. Localized pure ground-glass opacity on high-resolution CT : histologic characteristics. J Comput Assist Tomogr, 2002, 26: 323-329.
  • 8Zheng B, Gut D, Good WF, et al. A method to test the repro- ducibility and to improve performance of computer-aided detection schemes for digitized mammograms. Med Phys, 2004, 31(11 ): 2964-2972.
  • 9Zheng B, Hardesty LA, Poller WR, et al. Mammography with computer-aided detection: reproducibility assessment initial expe rience. Radiology, 2003,228(1) :58- 62.
  • 10Baker JA, Lo JY, Delong DM, et al. Computer aided detection in screening mammography: variability in cues. Radiology, 2004, 233(2) :411- 417.

共引文献10

同被引文献29

  • 1CLAUDON M, DIETRICH CF, CHOI BI, et al. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver-update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS [J]. Ultrasound Med Biol, 2013,39(2) : 187-210.
  • 2JALALIAN A, MASHOHOR SBT, MAHMUD HR, et al. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review [J]. Clin Imag, 2013,37(3) :420-426.
  • 3LITJENS G, DEBATS O, BARENTSZ J, et al. Computer-Aided Detection of Prostate Cancer in MRI [J]. IEEE Transactions Med Imag, 2014,33(5) : 1083- 1092.
  • 4VAN GINNEKEN B, SCHAEFER-PROKOP C M, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic [J]. Radiology, 2011,261 (3):719-732.
  • 5CE L, YUEN J, TORRALBA A, et al. SIFT Flow: Dense Correspondence across Scenes and Its Applications [J]. IEEE Transactions Pattern Analys Machine Intell, 2011,33(5) :978-994.
  • 6BALLANGAN C, WANG X, FULHAM M, et al. Lung tumor segmentation in PET images using graph cuts [J]. Comput Methods Programs In Biomed, 2013,109(3) : 260-268.
  • 7BERBER T, ALPKOCAK A, BALCI P, et al. Breast mass contour segmentation algorithm in digital mammograms [J]. Comput Methods Programs Biomed, 2013,110(2) : 150-159.
  • 8MITTAL D, KUMAR V, SAXENA SC, et al. Neural network based focal liver lesion diagnosis using ultrasound images [J]. Comput Med Imag Graphics, 2011,35 (4) :315-323.
  • 9TAN T, PLATEL B, TWELLMANN T, et al. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound[J]. Acad Radiol, 2013, 20( 11 ) : 1381-1388.
  • 10JONES J, XIE X, ESSA E, et al. Combining region- based and imprecise boundary-based cues for interactive medical image segmentation [J]. Int J Num Methods Biomed Engin, 2014,30(12) : 1649-1666.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部