期刊文献+

基于多项式的等高齿锥齿轮时变啮合刚度建模 被引量:5

Modelling of high-spiral bevel gear mesh stiffness based on polynomial
下载PDF
导出
摘要 针对某型雷达装置的等高齿锥齿轮在啮合时的时变啮合刚度,提出一种多项式函数展开的时变啮合刚度新模型。通过转速、负载扭矩、阻尼因子系数分析,构建了多项式函数展开的时变啮合刚度模型,建立了等高齿锥齿轮的非线性动力学方程。将本文建立的时变啮合刚度模型与传统的多阶简谐波叠加形式的时变啮合刚度模型以及综合刚度参考数据模型进行分析对比,发现在小阻尼、重载工况下这种多项式形式的时变啮合刚度模型能更贴近于时变啮合刚度的实际特性,该模型为齿轮传动的减振、降噪、平稳传动等方面的动力学研究打下基础。 We present a new time-varying mesh stiffness model using polynomial function with regard to the time-varying mesh stiffness of the high-bevel gear of a radar device. By analyzing the revolution speed, load torque and damping factor, we build the mesh stiffness model and the nonlinear dynamic equations of the high-bevel gear. We compare the proposed mesh stiffness model with traditional rime- varying mesh stiffness model of multi-order harmonic superposition and reference data model of time- varying comprehensive stiffness. It is shown that, with small damping and overload, the proposed model is much closer to the actual characteristics of the time-varying stiffness. This model lays a foundation to study the gear transmission dynamics, such as vibration damping, noise reduction, smooth transmission and other aspects with small damping and overload.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第4期939-944,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51075006) 国家重大科技专项项目(2010ZX04001-041) 北京市科委项目(Z111104054111)
关键词 仪器仪表技术 时变啮合刚度模型 等高齿锥齿轮 多项式应用 非线性动力学 technology of instrumen and meter time-varying stiffness model high-spiral bevel gearpolynomial application nonlinear dynamic
  • 相关文献

参考文献11

二级参考文献55

共引文献160

同被引文献39

  • 1李宏坤,郭骋,房世利,丁健.齿轮箱减振降噪优化设计方法研究[J].振动与冲击,2013,32(17):150-154. 被引量:31
  • 2蒋春明,阮米庆.汽车机械式变速器多目标可靠性优化设计[J].汽车工程,2007,29(12):1090-1093. 被引量:21
  • 3李瑰贤,于广滨,温建民,管竹.求解齿轮系统非线性动力学微分方程的多尺度方法[J].吉林大学学报(工学版),2008,38(1):75-79. 被引量:7
  • 4Gosselin C,Cloutier L,Nguyen Q D.A general formulation for the calculation of the load sharing and transmission error under load sharing and transmission error under load of spiral bevel and hypoid gears[J].Mech Mach Theory,1995,30(3):433-450.
  • 5Gosselin C,Gagnon P,Cloutier L.Accurate tooth stiffness of spiral bevel gear teeth by the finite strip method[J].Journal of Mechanical Design,1998,120(4):599-605.
  • 6Sugimoto M,Maruyama N.Effect of tooth contact and gear dimensions on transmission errors of loaded hypoid gears[J].Journal of Mechanical Design,1991,113(2):182-187.
  • 7Litvin F L,Zhang Y,Wang J C,et al.Design and geometry of face-gear drives[J].Journal of Mechanical Design,1992,114(4):642-647.
  • 8Zanzi C,Pedrero J I.Application of modified geometry of face gear drive[J].Computer Methods in Applied Mechanics and Engineering,2005,194(27-29):3047-3066.
  • 9Litvin F L.Gear Geometry and Applied Theory[M].Englewood Cliffs,New Jersey:Prentice Hall,Inc.,1994.
  • 10Litvin F L,Gonzalez-Perez I,Fuentes A,et al.Design,generation and stress analysis of face-gear drive with helical pinion[J].Computer Methods in Applied Mechanics and Engineering,2005,194(36-38):3870-3901.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部