期刊文献+

高稳定、强鲁棒性DFB激光器温度控制系统 被引量:28

DFB laser temperature control system with high stability and strong robustness
下载PDF
导出
摘要 为减少分布式反馈(DFB)激光器输出波长和光功率受其工作温度波动的影响,采用Ziegler-Nichols比例-积分-微分(PID)控制算法,设计并研制了一种具有强鲁棒性的DFB激光器温度控制系统。利用该温度控制系统,对中国科学院半导体研究所研制的中心波长为1.742μm的DFB激光器进行了温度控制测试。实验证明,该系统的控制精度为±0.05℃,温度控制范围为5~60℃,并在长时间(220min)运行中,DFB激光器工作状态稳定,中心波长未出现漂移,为DFB激光器在红外气体检测领域的实用化提供了性能保障。 In order to reduce the influences of the operation temperature of Distributed Feedback (DFB) laser on its output wavelength and optical power, a strong robustness DFB laser temperature control system was developed using Ziegler-Nichols Proportion-Integral-Derivative (PID) control algorithm. Using this temperature control system, an experiment was performed on a DFB laser with a center wavelength of 1. 742 μm, which was manufactured by the Institute of Semiconductor, CAS. The results indicate that the temperature accuracy of ±0.05 ℃ and control range of 5 ℃-60 ℃ can be achieved by this system respectively. The tested DFB laser works stably without center wavelength shift during long term (220 min) operation. Therefore, this temperature control system provides superior performance that guarantees the application of the DFB laser in infrared gas detection.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第4期1004-1010,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2007AA06Z112 2007AA03Z446 2009AA03Z442)
关键词 光电子学与激光技术 分布式反馈(DFB)激光器 强鲁棒性 红外气体检测 optoelectronics and laser technology distributed feedback (DFB) laser strongrobustness infrared gas detection
  • 相关文献

参考文献11

  • 1Tittel F,Richter D,Fried A.Mid-infrared laser ap-plications in spectroscopy[J].Solid-State Midinfra-red Laser Sources,2003,89:445-510.
  • 2温志渝,王玲芳,陈刚.基于量子级联激光器的气体检测系统的发展与应用[J].光谱学与光谱分析,2010,30(8):2043-2048. 被引量:9
  • 3Werle Peter,Slemr Franz Karl,Kormann Robert.Near-and mid-infrared laser-optical sensors for gasanalysis[J].Optics and Lasers in Engineering,2002,37:101-114.
  • 4Maurus Tacke.New developments and applicationsof tunable lead salt lasers[J].Infrared Phys Tech-nology,1995,36(1):447-463.
  • 5Seufert J,Fischer M,Legge M,et al.DFB laser di-odes in the wavelength range from 760nm to 2.5μm[J].Spectrochimica Acta Part A:Molecular and Bi-omolecular Spectroscopy,2004,60:3243-3247.
  • 6Alexandre Larrue,Olivier Bouchard,Antoine Mon-mayrant,et al.Precise frequency spacing in photon-ic crystal DFB laser arrays[J].IEEE PhotonicsTechnoligy Letters,2008,20(24):2120-2122.
  • 7Klehr A,Wenzel H,Brox O,et al.High powerDFB lasers for D1and D2rubidium absorption spec-troscopy and atomic clocks[C]∥Proc SPIE NovelIn-Plane Semiconductor Lasers VIII,2009,7230.
  • 8Lineykin S,Ben-Yaakov S.Analysis ofthermoelec-tric coolers by a SPICE-compatible equivalent circuitmodel[J].Power Electronics Letters,2005,3(2):63-66.
  • 9Linear Technology.LTC1655 16-Bit Rail-to-RailMicropower DAC in SO-8Package[P].1998.
  • 10MAXIM. Power Drivers for Peltier TEC Modules MAX1968/MAX1969[P]. 2002.

二级参考文献47

  • 1Capasso F. Journal of Vacuum Science and Technology B, 1983, 1: 457.
  • 2Capasso F. Science, 1987, 235: 172.
  • 3Faist J, Capasso F, Sivco D L, et al. Science, 1994, 265: 553.
  • 4Wikipedia, the Free Encyclopedia, Quantum Cascade Laser, 2009.
  • 5Elsaesser T. In Intersuband Transitions in Quantum Structures, R. Paiella, Editor. , 2006, McGraw Hill.
  • 6Harrison P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostruetures. 2nd ed. 2005.. Wiley-lnterscience.
  • 7Sirtori C, et al. In Intersubband Transistions in Quantum Wells: Physics and Device Applications II , H. C. L. a. F. Capasso, Editor. , 2000, Academic Press.
  • 8Liu Z, et al. IEEE Photon. Techonol. Lett. , 2006, 18: 1347.
  • 9Yisa Rumala, The York Scholar, v. 3(Fall 2006).
  • 10Trocoli Mariano, Diehl I.aurent, Bour David P. Journal of Lightwave Technology, 2008, 26(21): 1.

共引文献8

同被引文献176

引证文献28

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部