期刊文献+

噪声未知情况下的自适应无迹粒子滤波算法 被引量:7

Adaptive unscented particle filter algorithm under unknown noise
下载PDF
导出
摘要 为了有效地解决系统噪声未知情况下的目标跟踪问题,提出了一种自适应无迹粒子滤波算法。该算法采用改进的Sage-Husa估计器对系统未知噪声的统计特性进行实时估计和修正,并与无迹卡尔曼滤波器相结合产生优选的建议分布函数,降低系统估计误差的同时有效提升了系统的抗噪声能力。实验结果表明:本文方法明显地改善了系统噪声未知情况下目标的跟踪精度和稳定性。 In order to solve the target tracking problem when the statistic characteristics of the system are unknown, an adaptive unscented particle filter algorithm is proposed. This algorithm estimates and corrects the statistic characteristics of the unknown system noise in real-time using improved Sage- Husa estimator. Combining with unscented Kalman filter, the algorithm produces the optimal proposal distribution function. This method effectively reduces the estimation error and improves the anti-noise ability of the system. Theoretical analysis and experiments show that the new method can significantly improve the accuracy and stability of target tracking when the statistic characteristics of the system are unknown.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第4期1139-1145,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60964003) 高等学校博士学科点专项科研基金项目(20106201110003)
关键词 信息处理技术 粒子滤波 自适应滤波 无迹卡尔曼滤波 目标跟踪 information processing particle filter adaptive filtering unscentde Kalman filter targettracking
  • 相关文献

参考文献11

  • 1Gordon N J,Salmond D J,Smith A F M.Novel ap-proach to nonlinear/non-gaussian bayesian state esti-mation[J].IEE Proceedings on Radar and SignalProcessing,1993,140(2):107-113.
  • 2Carpenter J,Clifford P.Imroved particle filter fornonlinear problems[J].IEEE Proceedings of Radar,Sonar and Navigation,1999,100(1):2-7.
  • 3张苗辉,刘先省.基于MCMC无味粒子滤波的目标跟踪算法[J].系统工程与电子技术,2009,31(8):1810-1813. 被引量:14
  • 4Wei Qi,Xiong Zhang,Li Chao,et al.A robust ap-proach for multiple vehicles tracking using layeredparticle filter[J].International Journal of Electron-ics and Communications,2011,65:609-618.
  • 5Kirchmaier U,Hawe S,Diepold K.Dynamical in-formation fusion of heterogeneous sensors for 3Dtracking using particle swarm optimization[J].In-formation Fusion,2012,12(4):275-283.
  • 6杨小军,邢科义.无线多跳传感器网络下基于粒子滤波的信道容错的目标跟踪方法[J].自动化学报,2011,37(4):440-448. 被引量:15
  • 7Doucet A,Godsill S J,Andrieu C.On sequentialMonte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 8Julier S J,Uhlmann J K.Unscented filtering andnonlinear estimation[J].IEEE Trans Signal Pro-cessing,2004,92(3):401-422.
  • 9曲彦文,张二华,杨静宇.改进的无迹粒子滤波算法[J].控制理论与应用,2010,27(9):1152-1158. 被引量:14
  • 10石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用[J].自动化学报,2011,37(6):755-759. 被引量:96

二级参考文献31

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3邓小龙,谢剑英,郭为忠.Bayesian target tracking based on particle filter[J].Journal of Systems Engineering and Electronics,2005,16(3):545-549. 被引量:10
  • 4杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 5YAO Kung.Sensor Networking: Concepts, Applications, and Challenges[J].自动化学报,2006,32(6):839-845. 被引量:8
  • 6Tudoroiu N, Khorasani K. State estimation of the vinyl acetate reactor using unscented Kalman filters (UKF) [C] // IEEE, Dept. of Electrical and Computer Engineering, Concordia University Montreal, Quebec H3G 1M 8, Canada, 2005.
  • 7Jose M Huerta, Josep Vidal. Mobile tracking using UKF, time measures and LOS-NLOS expert knowledge[C]//IEEE, Dept. of Signal Theory and Communications, University Polytechnic de Catalunya Jordigirona , 2005.
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proc. o f Ra dar and Signal Processing, 1993,140(2) : 107 - 113.
  • 9Chang Cheng, Ansari Rashid. Kernel particle filter for visual tracking[J]. IEEE Signal Processing Letters, 2005, 12(3) :242 - 245.
  • 10Morales R, Poole D. Real-time monitoring of complex industrial processes with particle filters [R]. Orlando: University of British Columbia, 2003.

共引文献131

同被引文献90

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部