期刊文献+

两台平行机排序博弈问题的协调机制 被引量:3

Coordination Mechanism of Two Parallel Machines Scheduling Game Problem
下载PDF
导出
摘要 排序理论是组合最优化理论的重要组成部分,如果在排序过程中有一个系统管理员来安排相应任务,那么往往会得到比较理想的解。但是,随着互联网的发展,在许多排序过程中由系统管理员来强加控制是不可行的,因为互联网的用户具有独立性和自利性,他们"自私"地追求自身的利益最优,而不在乎是否造成社会资源的浪费。若没有合理的资源使用机制,这种自利性往往会使结果与理论最优值偏差巨大。因此设计合理的机制以影响、引导独立和"自私"的用户的选择从而减少社会资源的浪费将具有重大的理论意义。本文针对如下排序博弈模型:具有2台平行机,工件是局中人,工件的策略是对机器的选择,工件的目标是最小化它的完工时间,全局目标是最小化最大完工时间,探讨SPT-LPT机制(SPT-LPT机制是指一台机器按工件加工时间的不减顺序排序,另一台机器按工件加工时间的不增顺序排序),首先研究了SPT-LPT机制下相应排序博弈问题的纳什均衡解的情况,其次证明了当工件数不小于4时,SPT-LPT机制下的无秩序代价为4/3。 Scheduling theory is an important part of the theory of combinatorial optimization. If there is a system administrator to arrange tasks in scheduling processing, it may get an ideal solution. However, with the development of the Internet, many scheduling process imposed by the system administrator to control is not feasible. It is because the systems consist of many independence self-interest agents who " selfishly" pursue their own optimal and do not care about the waste of social resources. If there is no reasonable mechanism for the use of resources, the self-interest may lead to large deviation between the results and the theoretical optimal value. Designing a reasonable mechanism to influence and guide the independent and selfish agents to decvease the waste of social resources will be of great theoretical significance. We considered the following scheduling game problem. There were two parallel machines and n jobs. Each job was a player and its strategy set was of the two machines. The objective of an agent was to minimize its own completion time. The global objective was to minimize the maximum completion time of the jobs. SPT-LPT mechanism was a coordination mechanism that one of the machines schedules the jobs that choose to be processed on it in the order of increasing processing time, and the other schedules the jobs that choose to be processed on it in the order of decreasing processing time. We first analized the Nash E- quilibrium solutions of the SPT -LPT mechanism and then showed that the price of anarchy of SPT-LPT mechanism was 4/3 when there were at least 4 jobs.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第7期110-114,共5页 Periodical of Ocean University of China
基金 中央高校青年教师专项基金项目(201013035) 山东省自然科学基金青年基金项目(ZR2012AQ012)资助
关键词 SPT-LPT机制 排序博弈 纳什均衡解 无秩序代价 SPT -LPT mechanism scheduling game Nash equilibrium the price of anarchy
  • 相关文献

参考文献16

  • 1Graham R L, Lawler E L, Lenstra J K, et al. Optimization and approximation in deterministic sequencing andscheduling: A survey [J]. Annals of Discrete Mathematics, 1979, 5(2): 287-326.
  • 2Garey M R, Johnson D S. A Guide to the Theory of NP-Completeness [M]. San Francisco:Freeman, 1979.
  • 3Graham R L. Bounds on multiprocessing timing anomalies [J]. SIAM Journal of Applied Mathematics, 1969, 45: 416-429.
  • 4Christodoulou G, Koutsoupias E, Nanavati A. Coordination mechanisms [C]. //Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP), 2004:345-357.
  • 5Finn G, Horowitz E. A linear time approximation algorithm for multiprocessor scheduling[J]. BIT, 1979,19: 312-320.
  • 6Nash J. Non-cooperative games [J]. The Annals of Mathematics, 1951, 54(2): 286-295.
  • 7Durr C, Thang N K. Non-clairvoyant scheduling games [J]. Algorithmic Game Theory (SAGT), 2009, 5814: 135-146.
  • 8Aspnes J, Azar Y, Fiat A, et al. Online routing of virtual circuits with applications to load balancing and machine scheduling [J]. Journal of the ACM, 1997, 44(3): 486-504.
  • 9Dobson G, Scheduling independent tasks on uniform processors[J]. SIAM Journal on Computing, 1984,13: 716-721.
  • 10Czumaj A, Vocking B. Tight bounds for worst-case equilibria [C].//Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002,413-420.

同被引文献24

  • 1Deshi Ye,Jianhai Chen.Non-cooperative games on multidimensional resource allocation[J].Future Generation Computer Systems.2013(6)
  • 2Yanhong Gu,Jing Fan,Guochun Tang,Jiaofei Zhong.Maximum latency scheduling problem on two-person cooperative games[J].Journal of Combinatorial Optimization.2013(1)
  • 3B. Q. Fan,T. C. E. Cheng,S. S. Li,Q. Feng.Bounded parallel-batching scheduling with two competing agents[J].Journal of Scheduling.2013(3)
  • 4Y. H. Gu,M. Goh,Q. L. Chen,R. D. Souza,G. C. Tang.A new two-party bargaining mechanism[J].Journal of Combinatorial Optimization.2013(1)
  • 5Cai, Xiaoqiang,Vairaktarakis, George L.Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs[J].Operations Research.2012(6)
  • 6Zhiyi Tan,Long Wan,Qi Zhang,Wei Ren.Inefficiency of equilibria for the machine covering game on uniform machines[J].Acta Informatica.2012(6)
  • 7Shisheng Li,Jinjiang Yuan.Unbounded parallel-batching scheduling with two competitive agents[J].Journal of Scheduling.2012(5)
  • 8Bo Chen,Sinan Gürel.Efficiency analysis of load balancing games with and without activation costs[J].Journal of Scheduling.2012(2)
  • 9George Christodoulou,Elias Koutsoupias,Paul G. Spirakis.On the Performance of Approximate Equilibria in Congestion Games[J].Algorithmica.2011(1)
  • 10Baruch Mor,Gur Mosheiov.Single machine batch scheduling with two competing agents to minimize total flowtime[J].European Journal of Operational Research.2011(3)

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部