期刊文献+

基于非线性标准差模型的差分光学吸收光谱技术烟气浓度测量 被引量:4

A non-linear standard deviation model for differential optical absorption spectroscopy to determine flue gas concentration
原文传递
导出
摘要 采用差分光学吸收光谱(DOAS)技术测量烟气时,需采用非线性补偿方法来提高测量精度。本文基于自行研制的DOAS技术烟气测量系统,对SO_2和NO标准气体进行了单一气体的建模实验,提出了利用差分光学密度标准差和气体浓度之间关系的非线性模型预测烟气浓度的方法,并以此测量了SO_2和NO单一组分及混合气体的浓度,将实验结果与传统最小二乘法的反演浓度进行了对比。结果显示,测量单一气体时,得到的两种气体非线性模型的判定系数R^2分别为0.999 6和0.999 5,SO_2的满量程误差为±0.7%,最大误差为2.6%和2.8%,明显优于最小二乘法反演最大误差-16.1%和-19.9%;测量混合气体时,最大误差由传统方法的-24.6%和-28.1%减小至-4.8%和5.2%。结果表明,本文方法可提高烟气测量的准确度。 Differential optical absorption spectroscopy (IX)AS) has been w^deJy applied in the flue gas concentration determination based on Lambert-Beerr s law. However, under high concentration poilu- tantts, the bias from Lambert-Beer's law increases due to the pollutant molecule interactions, and causes inevitable errors only with least squares regression. Therefore, a non-linear model for flue gas concentra tion determination based on standard deviation of differential optical density is put forward in this paper, proved by both single-component and mixture experiments with standard SO2 and NO, and compared with traditional least-squares (IS) modeling method. The results of nonqinear modeling method indicate that in the single-component experiment,the correlation coefficients (R2 ) of non-linear models are 0. 999 6 for SO2 and 0. 999 5 for NO, and the maximum errors greatly reduce to 2.6% and 2.8% compared with --16. 1% and --19. 9% using traditional LS modeling method;in the mixture experiment, the maximum errors also obviously decrease to --4. 8% and 5.2% compared with --24. 6% and --28. 1% using LS modeling. In all, this non-linear modeling method based on standard deviation of differential op- tical density possesses great potential to be applied to the flue gas concentration determination with an improved accuracy.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第7期1344-1349,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60938002) 天津市自然科学基金(10JCZDJC22700) 河北省自然科学基金(D2012201115)资助项目
关键词 差分光学吸收光谱(DOAS)技术 差分光学密度 标准差 烟气 Differential optical absorption spectroscopy (IX)AS) ~ differential optical density~ standarddeviatiom flue gas
  • 相关文献

参考文献17

  • 1Roscoe H K,Clemitshaw K C. Measurement techniques in gas-phase tropospheric Chemistry: A selective view of the past, present, and future[J]. Science, 1997, 276 (5315) :1065-1072.
  • 2Bousquet P W,Gaboriaud A, Gaudon P,et al. French in?struments for in-situ missions: Past, present and future[J]. Acta Astronautica, 2012,81 (1) : 358-368.
  • 3高楠,杜振辉,齐汝宾,马艺闻,高东宇,陈文亮,汪嚥.调谐二极管激光吸收光谱技术中的线形误差与校正[J].光电子.激光,2011,22(6):893-896. 被引量:7
  • 4熊兴隆,蒋立辉,冯帅,庄子波.基于不动点原理的大气气溶胶消光系数边界值确定方法[J].光电子.激光,2012,23(2):303-309. 被引量:11
  • 5NoxonJ F. Whipple E C. Hyde R S. Stratospheric NO, . observational method and behavior at midlatltudesJ J].J. Geophys.Res .? 1979.84:5067-5076.
  • 6Platt U, Perner D. P. tz H. Simultaneous measurements of atmospheric CH, 0.03 and NO, by differential optical ab?sorption[J].J. Geophys. Res .? 1979.84(10): 6329-6335.
  • 7Merten A. TschritterJ. Platt U. Design of differential opti?cal absorption spectroscopy long-path telescopes based on fiber optics[J]. Appl. Opt .? 2011,50(5) : 738-754.
  • 8Platt U. Air monitoring by spectroscopic techniques[M]. New York -Jobn Wiley & Sons.1994,27-84.
  • 9StutzJ, Platt U. Numerical analysis and estimation of the statistical error of differential optical absorption spectros?copy measurements with least-squares rnetnoosJ J]. Ap?pI. Opt. ,1996.35(30) :6041-6053.
  • 10Kambe Y. Yoshii Y. Takahashic K .et al. Monitoring of at?mospheric nitrogen dioxide by long-path pulsed differenti?al optical absorption spectroscopy using two different light paths] J].J. Environ. Monit. .2012.14: 944-950.

二级参考文献33

共引文献22

同被引文献54

  • 1洪光烈,张寅超,胡顺星.探测低空大气CO_2浓度分布的近红外微脉冲激光雷达[J].红外与毫米波学报,2004,23(5):384-388. 被引量:10
  • 2刘小勤,张寅超,胡欢陵,谭锟,杨高潮,邵石生.车载差分吸收激光雷达对SO_2的测量[J].光电子.激光,2004,15(11):1352-1356. 被引量:1
  • 3尹世荣,王蔚然,李新山.差分吸收激光雷达回波信号统计模型的研究[J].光学学报,2005,25(1):1-5. 被引量:7
  • 4Ishii S,Koyama M,Baron P,et al.Ground-based integrated path co herent differential absorption lidar measurement of CO2: foothill target return[J].Atmospheric Measurement Techniques,2013,6:1359-1369.
  • 5Fabien Gibert,Dimitri Edouar,Claire Ce′nac,et al.2-lm high-p ower multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application[J].Appl.Phys.B.,2014,116:967-976.
  • 6Amediek A,Fix A,Wirth M,et al.Development of an OPO system at 1.57μm for integrated path DIAL measurement of atmospheric carbon dioxide[J].Applied Physic B,2008,92 :295-302.
  • 7James B Abshire, Haris Riris, Graham R Allan, et al.Pulsed airborn e lidar measurements of atmospheric CO2column absorption[J].Tellus,2010,62B:770-783.
  • 8Ezra I,Alan P T L,Daniel J F.B,et al .Coherent detection in optical fiber systems[J].Opt Express,2008, 16(2):764-773.
  • 9Joshi A,Becker D,Datta D S.Low-noise InGaAs bal anced pin photoreceiver for space based remote sensing applications at 2micron wavelength[A].Proc.of SPIE[C].2008,7095:7095:1-8.
  • 10Ishii S,Koyama M,Baron P,et al. Ground-based integrat- ed path coherent differential absorption lidar measure- ment of 002 :foothill target return[J]. Atmospheric Meas- urement Techniques, 2013,6 : 1359-1369.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部