期刊文献+

一种抗信息丢失的稳像系统 被引量:1

A video stabilization system for preventing information loss
原文传递
导出
摘要 针对二维电子稳像补偿全局运动矢量后会出现大量的空白区域,提出了一种不需要采用单应性模型明确估计全局运动矢量的快速平滑特征轨迹的稳像算法。首先,采用改进的快速鲁棒特征(SURF)提取图像局部特征点;然后,利用空间运动的一致性连接帧与帧之间匹配的特征点得到特征点轨迹;最后,建立同时考虑特征轨迹的平滑度和视频质量退化程度的目标函数平滑特征点轨迹,得到稳定的视频。实验结果表明,用本文方法稳定的视频比Matsushita方法处理后的视频丢失的区域减小了30%左右,更满足人眼感官需求,减轻了费时的运动修复任务;同时消除了运动估计中帧间匹配的累积误差,对前景存在较大局部运动的视频仍能表现较好的稳像效果。 To solve the problem that there will be massive blank area after 2D digital image stabilization compensates global motion vectors, we propose a video stabilizing algorithm which can smooth feature trajectories quickly without using homography model to estimate global motion vectors. First,we extract images' local feature points with improved SURF algorithm. Then,by connecting the matching points be- tween frames based on consistency of spatial motion,we get the feature trajectories. At last,we establish an objective function which takes both smoothness of the feature trajectories and degeneration of video quality into consideration to smooth the feature traiectories and get the stabilized video. The results of experiment indicate that the stabilized video with this method has 30 ~/0 less blank area and can satisfy human sense compared with those with Matsushita method, and can reduce the motion inpainting. More- over, it eliminates the accumulated error between frames in motion estimation and it is helpful to the vid- eo with large local motion in foreground.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第7期1416-1421,共6页 Journal of Optoelectronics·Laser
基金 国家“973”重点基础研究发展规划(2009CB72400603B) 国家“863”高技术研究发展计划(2008AA121803)资助项目
关键词 电子稳像 点特征轨迹 运动估计 运动补偿 digital image stabilization point-feature trajectories motion estimation motion compensation
  • 相关文献

参考文献15

  • 1Matsushita Y,Ofek E,Ge W .et al. Full-frame video stabi?lization with motion inpainttnqJ J}. IEEE Transactions on pattern analysis and Machine Intelligence, 2006,28 (7) : 1150-1163.
  • 2张朝阳,田铮,崔巍巍.仿射形变条件下形状匹配的矩阵投影方法[J].光电子.激光,2012,23(2):359-365. 被引量:2
  • 3杨涛,张艳宁,张秀伟,张新功.基于场景复杂度与不变特征的航拍视频实时配准算法[J].电子学报,2010,38(5):1069-1077. 被引量:22
  • 4张坤,许廷发,王平,冯亮.高精度实时全帧频SURF电子稳像方法[J].光学精密工程,2011,19(8):1964-1972. 被引量:23
  • 5丁南南,刘艳滢,张叶,陈春宁,贺柏根.基于SURF-DAISY算法和随机kd树的快速图像配准[J].光电子.激光,2012,23(7):1395-1402. 被引量:40
  • 6Battiato S,Galio G,Puglisi G,et al. Sift features tracking for video stabilization[AJ. Proc. of International-Confer?ence on Image Analysis and Processing[CJ. 2007, 8Z5- 830.
  • 7Wang C, KimJ H, Byun K Y, et al. Robust digital image stabilization using the kalman tllterJ J]. IEEE Transactions on Consumer Electronics,2009,550) :6-14.
  • 8Liu F, Gleicher M, WangJ, et al. Subspace video stabili?zationJ J}. ACM Transactions on Graphics, 2011 ,300) : 1- 10.
  • 9Buehler C,Bosse M,McMilian L. Non-metric image-based rendering for video stabilizationj A}. Proc. of IEEE Com?puter Society Conference on Computer Vision and Pattern Recognition[CJ. 2001,609-614.
  • 10Liu F ,Gleicher M, WangJ,et al. Content-preserving war?ps for 3d video stabilization[J]. ACM Transactions on Graphics, 2009,28 (3) : 1-9.

二级参考文献58

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2FAN Xin,LIANG De-qun.Probabilistic contour extraction based on shape prior model[J].Optoelectronics Letters,2005,1(2):151-154. 被引量:1
  • 3Ali S, Reilly V, Shah M. Motion and appearance contexts for tracking and reacquiring targets in aerial videos [ A]. In Proceedings of the IEEE Conference on Computer Vision and Patter Recognition [ C ]. Minneapolis, MN, USA, IEEE Computer Society: 2007.1 - 6.
  • 4Unmanned Aircraft Systems Roadmap 2005-2030 [ R]. Office of the Secretary of Defense, Washington. DC, USA, 2005.71 - 77.
  • 5Tomasi C, Kanade T. Detection and tracking of point features [R]. Carnegie Mellon University, Technical Report, 1991.1 - 20.
  • 6Lindeberg T. Feature detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998,30(2 ) : 77 - 116.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) :91- 110.
  • 8Matas J, Chum O, Urban M, and Pajdla T. Robust wide baseline stereo from maximally stable extreme regions [ A]. In Proceedings of British Machine Vision Conference [ C ]. Cardiff, UK, 2OY2. 384 - 393.
  • 9Grabner M, Grabner H, Bischof H. Fast approximated SIFT[A]. In proceedings of Asian Conference on Computer Vision [C]. India,2006.918 - 927.
  • 10Mikolajczyk K, Schrnid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27( 10):1615- 1630.

共引文献85

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部