摘要
使用线性有限元法求解运动导体涡流场,当单元Peclec数大于1时数值解产生伪振荡。为克服这一困难,提出一种新的“有限解析单元法”,其基本思想是:在单元内构造满足节点条件的局部解析解或局部近似解析解作为形状函数,使用加权余数法建立有限元方程。利用此方法研究了一维和二维运动导体时谐涡流问题,得到了很好的效果,初步验证了该方法的有效性。
A novel finite analytic element method (FAEM) is presented for solving eddy current problems of moving conductor. The basic idea of FAEM is the incorporation of local analytic solution of the governing equation in the finite element method. A local analytical solution satisfying its node conditions is found in each element and is used for determining the shape functions. Then a weighted residuals scheme is followed to create the linear algebraic equations. The efficiency of FAEM is validated by applying it to solve 1D and 2D problems.
出处
《电机与控制学报》
EI
CSCD
2000年第3期143-147,共5页
Electric Machines and Control
基金
国家自然科学基金!(59707003)
武汉市科委"晨光"基金
关键词
运动导体
有限解析单元法
涡流场
数学模型
eddy current
moving conductor
finite element method
finite analytic element method