期刊文献+

脑-机接口系统的类协同式半监督学习 被引量:1

Like-co-training Semi-supervised Learning for Brain-computer Interface
下载PDF
导出
摘要 针对如何提高有标签样本不足时的分类精度问题。提出脑-机接口系统(BCI)的类协同半监督学习算法(LCTSSL),采用有监督和无监督两种算法提取双特征训练双分类器协同扩充有标签样本集。在训练前后阶段设置不同置信度度量,选择两分类器分类结果一样的高置信度样本进行标记,保持每类每次新标记样本数目一样,提高有标样本集的可信度及识别系统的鲁棒性。迭代更新两分类器、有监督提取系统及相应特征,充分利用新标签信息。最后利用BCI竞赛2005的数据I证明LCTSSL算法的有效性。 A like-co-training semi-supervised learning algorithm for brain-computer interface is proposed aiming at improving the classification accuracy when a few of samples' labels have been known. Two kinds of features are extracted by supervised and unsupervised extractions respectively and two corresponding classifiers are trained. They cooperate with each other to enlarge the labeled set. Different standard for confidence is defined in different training stage. In order to improve the confidence of the enlarged labeled set and the robustness of the model of the pattern recognition, the unlabeled whose confidence is higher and predicted labels by the two classifiers are same will be labeled and make sure that the amounts of new labeled in each category are same. Both of classifiers, the supervised extractor and the corresponding features are updated each iteration for the purpose of absorbing new labels' information. At last, the applying on data set I of BCI competition 2005 demonstrated the validity of our pro-posed algorithm.
作者 刘美春
出处 《科学技术与工程》 北大核心 2013年第19期5508-5512,共5页 Science Technology and Engineering
基金 广东金融学院青年项目(11XJ03-12) 引进人才科研启动费项目(2012RCYJ006)资助
关键词 脑-机接口 半监督学习 协同训练 脑电图 brain-computer interface semi-supervised learning co-training EEG
  • 相关文献

参考文献13

  • 1Wolpaw J R, Birbaumer N, Mcfarland W J, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol, 2002; 113:767.-791.
  • 2杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 3Wang Y, Berg P, Scherg M. Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions : a simulation study . Clinical Neurophysiology , 1999; 112 (4) : 604——614.
  • 4Liao X, Yao D Z, Wu D. Combining spatial filters for the classifica- tion of single-trial EEG in a finger movement task. IEEE Transactions on Biomedical Engineering, 2007 ; 54 ( 5 ) : 821-831.
  • 5Dornhege G, Benjamin B, Gabriel C. Speeding up classification of multi-channel brain-computer spatial patterns for slow cortical poten- tials. Proceedings of the 1 at international IEEE EMBS Conference on Neural Engineering, 2003 ;674 : 595-598.
  • 6Ktibler A, Ghanayim N, Hinterberger T. The thought translation de- vice (TTD) for completely paralyzed patients. IEEE Transactions on rehabilitation engineering, 2000 ; 8 (2): 190-193.
  • 7[4]边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版社,2004
  • 8Fraunhofer FIRST, Wadsworth Center, Graz University of Technology. BCI competition III. http ://ida. first, fhg. de/projects/bci/competi- tion iii/. 2009 - 9 - 5.
  • 9刘美春.基于运动想象的脑-机接口系统模式识别算法研究.广州:华南理工大学,2009.
  • 10Zhang Wei, Lin Zhouchen, Xiaoou Tang. Learning semi-riemannian metries for semisupervised feature extraetion. IEEE Transactions on Knowledge and Data Engineering,2011 ;23 (4) :600.

二级参考文献56

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2E Curran, P Sykacck, S J Roberts. Cognitive tasks for driving a braincomputer interface system: a pilot study[J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,12(1) :48 - 54.
  • 3陈卓.脑部表层扫描技术-帮助大脑控制外部环境[DB/OL].http://www. cctv. com/news/world/20040929/102184. shtml,2004-09-29.
  • 4J R Wolpaw, N Birbaumer, W J McFarland. Brain-Computer Interface Technology: A review of the first international meeting[J] .IEEE Transaction on Rehabilitation Engineering,2000,8(2): 164- 173.
  • 5EEG-based communication [ DB/OL ]. http://www. ee. ic. ac. Uk/esearch/eural/bci/review. html, 2004-05-02.
  • 6Vaughan T M.EEG-based communication:prospects and problems[J].IEEE Trans Rehabil Eng, 1996,4(4) :425 - 430.
  • 7B Graimann, J E Huggins, S P Levine. Detection of ERP and ERD/ERS patterns in single ECG channels[A] .Proc of the 1st international IEEE EMBS Conference on Neural Engineering [C]. Capri island:IEEE,2003,614 - 616.
  • 8Vaughan T M. Guest editorial brain-computer interface technology: A review of the second international meeting [J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,11 (2) :94 - 109.
  • 9F Cincotti, D Mattia, C Babiloni. The use of EEG modifications due to motor imagery for brain-computer interfaces[J] .IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2003, 11 (2): 131 -133.
  • 10Sutter E E.The brain response interface: communication through visually-induced electrical brain response[J]. J Microcomput Appl, 1992,15:31 -45.

共引文献68

同被引文献13

  • 1ZHU X J. Semi supervised learning literature survey[R]. Madison: University of Wisconsin, 2008.
  • 2WOLPAW J R,BIRBAUMER N,MCFARLAND D J,et al. Brian-computer interfaces for communication and control [J]. Clinical Neurophysiology,2002,113(6) :767-791.
  • 3SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(5): 1087-1095.
  • 4BRUZZONE L, MINGMIN CH, MARCONCINI M. A novel transductive SVM for semisupervised classification of remote-sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11) : 3363-3373.
  • 5张学工.模式识别[M].3版北京:清华大学出版社,2010.
  • 6WANG J, XU G ZH, LEI W, et al. Classifying EEG for Brain-Computer Interface using Spatio-temporal Filters [C]. ISICA 2008 ,Wuhan,China,Dec 19-21,2008 : 184-187.
  • 7HYVARINEN A. A fast and robust fixed point algorithm for independent component analysis[J]. IEEE Transaction on Neural Networks, 1999,10 (3) : 626-634.
  • 8CEDRIC G, CONGEDO M. Non-stationary brain source separation for multi-class motor imagery[J]. IEEE Trans. Biomedical Engineering, 2010,57 ( 2 ) : 469-478.
  • 9WANG J,XU G ZH,WANG L. Feature extraction of brain-computer interface based on Improved multivariate adaptive autoregressive models [C]. BMEI'lO. Yantai, China, Oct 16-18,2010 : 895-898.
  • 10陈宇,陈怀海,李赞澄,贺旭东.基于时变AR模型和小波变换的时变参数识别[J].国外电子测量技术,2011,30(7):20-23. 被引量:14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部