摘要
设g是三维实李代数so(3)的复化李代数,A=C[t1±1,t2±1]是两个变量的复系数Laurent多项式环,设L(t1,t2,1)=gCA,d1,d2为L(t1,t2,1)的导子.在研究了L(t1,t2,1)的自同构群结构的基础上,研究L(t1,t2,1)(Cd1Cd2)的自同构群结构,证明其自同构群同构于C××C××GL2(Z).
Let g be the complexification of the real Lie algebra so(3) and A = C[t1± 1,t2± 1]be the Laurent polynomial algebra with two commuting variables.Let L(t1,t2,1) = gCA,d1,d2 are the derivations of L(t1,t2,1).Basing on the work for the automorphism group of L(t1,t2,1),we study the automorphism group of L(t1,t2,1) (Cd1Cd2).It is proofed that the automorphism group is automorpic to C×× C×× GL2(Z).
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期266-269,290,共5页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金资助项目(2012J01001
2010J05001)
福建工程学院科研发展预研基金资助项目(GY-Z10076)
关键词
李代数
自同构群
代数群
Lie algebra
automorphism group
algebraic group