期刊文献+

响应面法优化鸡腿菇子实体蛋白酶解工艺条件 被引量:12

The Enzymatic Hydrolysis Condition Optimization of the Fruit Body Protein of Coprinus Comatus by Response Surface Methodology
原文传递
导出
摘要 以鸡腿菇子实体蛋白为原料,分别用木瓜蛋白酶、碱性蛋白酶(Alcalase 2.4 L)、中性蛋白酶(Neutrase0.8L)、复合蛋白酶(Protamex)和风味蛋白酶(Flavorzyme 1 000 L)在各自适宜的条件下酶解,比较酶解物的水解度(DH)、蛋白质回收率(PR)、感官品质、抗氧化活性等。结果表明鸡腿菇子实体蛋白在碱性蛋白酶的作用下,其水解度、蛋白质回收率均最高,感官品质较为优良,抗氧化活性较高。研究酶活底物比([E]/[S])、底物浓度、酶解温度、pH值、时间对碱性蛋白酶酶解鸡腿菇子实体蛋白的影响,采用响应面法(RSM)优化得到最适工艺条件是:酶解pH 9.0、温度54.8℃,酶活底物比6271 U/g、底物质量分数1.0%、酶解时间4 h。在此条件下,水解度为24.05%。 Five proteases(Papain,Alcalase 2.4 L,Neutrase 0.8 L,Protamex,Flavorzyme 1 000 L) were used to hydrolyze the fruit body protein of Coprinus comatus at their suitable conditions.Based on the comparision of degree of hydrolysis(DH),protein recovery(PR),sensory evaluation and antioxidant activities of hydrolysates,Alcalase 2.4 L was the most suitable protease for the protein,for its highest DH and PR,better sensory quality and antioxidant activities.The effects of enzymolysis temperature,pH,time,ratio of enzyme activity to substrate ratio([E]/[S]) and substrate concentration on DH were studied.Response surface methodology was used to optimise the hydrolysis parameters of the fruit body protein of Coprinus comatus by Alcalase 2.4 L.The results showed that the optimum conditions were pH at 9.0,temperature at 54.8 ℃,[E]/[S] at 6271 U/g,time at 4 h,substrate concentration at 1%.At these conditions,the DH was 24.05%.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2013年第6期88-96,共9页 Journal of Chinese Institute Of Food Science and Technology
基金 浙江省重大科技专项(优先主题)重大农业项目(2008C02015) 浙江省重大科技专项农产品(食品)精深加工技术项目(2010C12012)
关键词 鸡腿菇子实体蛋白 碱性蛋白酶 酶解 响应面 fruit body protein of Coprinus comatus Alcalase 2.4L enzymatic hydrolysis response surface methodology
  • 相关文献

参考文献24

  • 1Alasalvar C., Shahidi F., Quantick P. Food and health applications of marine nutraceuticals: a review[M]// Alasalvar C, Taylor T, editors. Seafoods: quality, technology and nutraceutical applications. Berlin: Springer, 2002.
  • 2Liu Z., Zeng M., Dong S. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of Gray mold (Botrytis cinerea) on harvest strawberries[J]. Postharvest Biology and Technology, 2007, 46(1 ): 95-98.
  • 3Wergedahl H., Liaset B., Gudbrandsen O.A. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL-cholesterol and lowers Acyl-CoA-Cholesterol Acyhransferase activity in liver of zucker rats[J]. Journal of Nutrition, 2004, 134(6): 1320-1327.
  • 4Panyam D., Kilara A. Enhancing the functionality of food proteins by enzymatic modification[J]. Trends in Food Science & Technology, 1996, 7(4): 120-125.
  • 5Pan X. Y., Liu Y. L., Baohua K. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance[J]. Food Chemistry, 2009, 113(1): 196-201.
  • 6Pena-Ramos E.A., Xiong Y.L. Antioxidant activity of soy protein hydrolysates in a liposomal system [J]. Journal of Food Science, 2002, 67(8): 2952-2956.
  • 7Zhu K.X., Zhou H.M., Qian H.F. Antioxidant and free radical-scavenging activities of wheat germ protein hy- drolysates (WGPH) prepared with alcalase[J]. Process Biochemistry, 2006, 41(6): 1296-1302.
  • 8Sakanaka S., Tachibana Y., Ishihara N., et al. Antioxidant activity of egg-yolk protein hydrolyzates in a linoleic acid oxidation system[J]. Food Chemistry, 2004, 86(1): 99-103.
  • 9Sakanaka S., Tachibana Y., Ishihara N., et al. Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates[J]. Journal of Agriculture and Food Chemistry, 2005, 53(2): 464-468.
  • 10Je J.Y., Park P.J., Kim S.K. Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate[J]. Food Research International, 2005, 38(1): 45-50.

二级参考文献30

  • 1GB/T5009.37-2003.食用植物油卫生标准的分析方法[S]
  • 2Halliwell B.Antioxidant characterization:methodology and mechanism[J].Biochem.Pharmacol,1995,49:1341~1348
  • 3McClements D J,Decker E A.Lipid oxidation in oil-in-water emulsions:impact of molecular environment on chemical reactions in heterogeneous food systems[J].J Food Sci,2000,65:1 270~1282
  • 4Graf E,Mahoney J R,Bryant R G,et al.Iron catalyzed hydroxyl radical formation:Stringent requirement for free iron coordination site[J].J Biol Chem,1984,259:3620~3624
  • 5Nieto S,Garrido A,Sanhueza J,et al.Flavonoids as stabilizers of fish oil,an alternative to synthetic antioxidants[J].J Am Oil Chem Soc,1993,70:773~778
  • 6Roginsky V.Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton x-100 micelles[J].Arch Biochem Biophys,2003,414:261~270
  • 7Dormandy T L,Wickens D G.The experimental and clinical pathway of diene conjugation[J].Chem Phys Lipids,1987,45:353~364
  • 8Marklund S.A simple specific method for the determination of the hemoglobin content of tissue homogenates[J].Clin Chim Acta,1979,92:229~234
  • 9Miller N J,Rice-Evans C,Davies M J,et al.A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.[J].Clin Sci,1993,84:407~412
  • 10Rice-Evans C,Miller NJ.Total antioxidant status in plasma and body fluids[J].Methods Enzymol,1994,234:279~293

共引文献92

同被引文献146

引证文献12

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部