摘要
Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.
Multi-living agent system (MLAS) is a new concept in the field of complex system research, which is peculiarly suitable for the design and analysis of a complex information system in a serious confrontation and tight constraint environment. However, the universal method to quantitatively measure the living degree of an MLAS remains uncertain, which is critical to the self-organizing process. Therefore, a novel analytic hierarchy process (AHP) based method with dependent pairwise comparison matrix (PCM) for the evaluation of living degree of the MLAS is proposed, which eliminates the shortcoming of fixed PCM in traditional process. Furthermore, to avoid the annoying procedure of the consistency validation, the PCMs are appropriately reconstructed. Through an illustration of the netted radar system, the calculation detail is explicitly presented. Altogether, the advanced evaluation method successfully accomplishes the preset objective and promotes the development of the MLAS theory and AHP as well.
基金
supported by the National Natural Science Foundation of China(61172176)