摘要
针对超短期电力负荷值,提出了一种对其进行归类的算法。通过蚁群聚类确定数据类别,作为下一步模糊C均值聚类的初始条件,改进后的聚类分析确定了超短期负荷值与类别之间的隶属度关系。采用LM神经网络对聚类结果训练,并加以仿真,为将来的系统调度提供决策依据。
According to the super short term power load value,this paper puts forward a kind of the classification algorithm.Through the ant clustering class assuring data category,as the next step fuzzy c-means clustering initial condition.The improved clustering analysis decide the super short term load value and category of the relationship between the membership degree.It provides the decision-making basis for making the system scheduling by using and simulating LM neural network to clustering results training.
出处
《河北联合大学学报(自然科学版)》
CAS
2013年第3期74-80,共7页
Journal of Hebei Polytechnic University:Social Science Edition
关键词
蚁群聚类
模糊C均值聚类
LM神经网络
ant clustering class
fuzzy c-means clustering
LM neural network