期刊文献+

物理可实现的相位编码压缩成像 被引量:1

Physical Realizable Phase Encoding Compressed Imaging
下载PDF
导出
摘要 压缩成像是压缩感知理论最重要的研究领域之一.在分析压缩成像中实际测量矩阵与测量值约束的基础上,提出一种基于4-f光学架构的物理可实现的频域相位编码压缩成像方法.该方法利用两路光学架构之间的补偿实现相位编码压缩成像中测量值的非负记录,然后从该测量值精确恢复原图像,解决压缩成像应用中理论与实际物理约束之间不一致的问题.该方法可以单次曝光获得充分的测量值精确重建原图像,不需要其它附加信息,是压缩成像物理实现的一种非常可行的方案.模拟实验证明该方法可以有效地实现图像的压缩测量与超分辨率重建. Compressed Imaging(CI) is one of the most important research area of compressed sensing.Analyzing the constraints on actual measurement matrix and measurement values in CI,a frequency domain phase encoding CI method is proposed,which can be physically realized based on 4-f optical architecture.This method exploits two-way optical architecture compensated for the phase-encoding CI to implement the value non-negative for recording,and then accurately recover the original image from the measured values,to resolve inconsistencies between the theoretical requirements and physical constraints in CI.With measured values can be obtained in a single exposure,such method can reconstruct the original image precisely without additional information,and is a very practical scheme for physical realization of CI.Simulation experiments demonstrate that our proposed method can effectively capture compressed measurements of image and achieve super-resolution reconstruction.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第5期982-986,共5页 Acta Electronica Sinica
基金 NSFC-广东联合基金(No.U1201255) 高校博士点基金(No.20113401130001) 安徽省自然科学基金(No.1208085QF114) 安徽大学博士科研启动经费(No.33190218) 安徽大学青年基金(No.KJQN1120)
关键词 压缩成像 相位编码 物理可实现 compressive imaging phase encoding physical realizable
  • 相关文献

参考文献12

  • 1杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148. 被引量:121
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 3Duarte M F,et al.Single-pixel imaging via compressive sampling[J].IEEE Magazine on Signal Processing,2008,25(2):83-91.
  • 4Stern A,et al.Random projections imaging with extended space-bandwidth product[J].Journal of Display Technology.2007,3(3):315-320.
  • 5张成,杨海蓉,韦穗.循环-托普利兹块相位掩模可压缩双透镜成像[J].光学学报,2011,31(8):98-103. 被引量:14
  • 6Donoho D L.Compressed sensing[J].IEEE Trans.Inf.Theory,2006,52(4),1289-1306.
  • 7Candès E,et al.Robust uncertainty principles:exact signal re constuction from highly incomplete frequency information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509.
  • 8Igasaki Y,et al.High efficiency electrically-addressable phaseonly spatial light modulator[J].Optical Review,1999,6 (4),339-344.
  • 9Romberg J.Compressive sensing by random convolution[J].SIAM J.Imag.Sci.,2009,2(4):1098-1128.
  • 10Bioucas-Dias J,et al.A new TwIST:Two-step iterative shrinkage/thresholding algorithms for image restoration[J].IEEE Trans.Image Process.,2007,16(12):2992-3004.

二级参考文献130

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献810

同被引文献23

  • 1ROMBERG J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2) : 14-20.
  • 2NEIFELD M A, KE J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22) : 5293-5303.
  • 3DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289 1306.
  • 4CANDIES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5WILLETT R M, MARCIA R F, NICHOLS J M. Compressed sensing for practical optical imaging systems: a tutorial[J]. Optical Engineering, 2011, 50(7) : 072601.
  • 6MARIM M, ANGELINI E, OLIVO-MARIN J C, etal. Off- axis compressed holographic microscopy in low-light conditions[J]. Optics Letters, 2011, 36(1) : 79-81.
  • 7SUI X, CHEN Q, GU G, et al. Infrared super-resolution imaging based on compressed sensing[J]. Infrared Physics g: Technology, 2014, 63: 119-124.
  • 8DUARTE M F, DAVENPORT M A, TAKHAR D, et al.Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 9ROMBERG J. Compressive sensing by random convolution [J]. SIAM Journal on Imaging Sciences, 2009, 2(4) : I098- 1128.
  • 10WAGADARIKAR A, JOHN R, WILLETT R, etal. Single disperser design for coded aperture snapshot spectral imaging [J]. Applied Optics, 2008, 47(10) : B44-BS1.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部