期刊文献+

竞争环境下截流设施选址问题 被引量:2

Flow-Interception Facility Location Problem under Competitive Conditions
下载PDF
导出
摘要 研究企业新建设施时,市场上已有设施存在的情况下,使本企业总体利润最大的截流设施选址问题。在一般截留设施选址模型的基础上引入引力模型,消费者到某个设施接受服务的概率与偏离距离及设施的吸引力相关,同时设施的建设费用与设施吸引力正相关,建立非线性整数规划模型并使用贪婪算法进行求解。数值分析表明,该算法求解速度快,模型计算精度较高。 We consider a facility location model for locating a set of new facilities that compete for customer demand with each other, as well as with some pre-existing facilities both belong to the entity and the competitor, to capture the maximum profit of the entity. According to Huff gravity model, the probability that a customer se- lects a certain facility is proportional to its attractiveness and inversely proportional to the distance to the facility, we suppose the facility construction cost is relevant to its attractiveness, the problem is formulated as a non-linear integer program and solved by greedy algorithm. The numerical analysis indicates that the model and the method are practical.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2013年第3期97-101,共5页 Operations Research and Management Science
基金 国家自然基金重点项目(70832005) 国家自然科学基金重大项目资助(71090404/71090400) 国家自然科学基金资助项目(71002020)
关键词 运筹学 截流设施选址 竞争 非线性规划 贪婪算法 operations research tlow-interception facility location competition non-linear programming greedy heuristic
  • 相关文献

参考文献16

  • 1Hodgson M J. A flow-capturing location-allocation model[ J]. Geographical Analysis, 1990, 22 : 270-279.
  • 2Berman O, Larson R C, Fouska N. Optimal location of discretionary service facilities[ J]. Transportation Science, 1992, 26: 201-211.
  • 3Berman O, Bertsimas D, Larson R C. Locating discretionary service facilities, Ⅱ: maximizing market size, minimizing incon- venience [ J ]. Operations Research, 1995, 43 (4) : 623- 633.
  • 4Drezner T. Locating a single new facility among existing unequally attractiveness facilities[ J]. Journal of Regional Science, 1994, 34(2) : 237-252.
  • 5Berman O, Krass D. Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities [J]. Location Science, 1998, 6: 41-65.
  • 6Berman O, Krass D. Locating multiple competitive facilities: spatial interaction models with variable expenditures[ J]. Annals of Operations Research, 2002, 111 : 197-225.
  • 7Aboolian R, Berman O, Krass D. Competitive facility location model with concave demand[ J]. European Journal of Opera- tional Research, 2007, 181 : 598-629.
  • 8Aboolian R, Berman O, Krass D. Competitive facility location and design problem [ J]. European Journal of Operational Research, 2007, 182 : 40- 62.
  • 9Huang R B. Network location problems with multiple types of facilities[ D] . Toronto: Joseph L. Rotman School of Manage- ment, University of Toronto, 2005.
  • 10胡丹丹,杨超.在竞争环境中的拥塞设施截流选址问题[J].系统工程理论与实践,2010,30(1):68-72. 被引量:9

二级参考文献23

  • 1杨珺,张敏,陈新.一类带服务半径的服务站截流选址-分配问题[J].系统工程理论与实践,2006,26(1):117-122. 被引量:29
  • 2Hotelling. Stability in competition[J]. Economics Journal, 1929, 39(1): 41-57.
  • 3Benati S, Hansen P. The maximum capture problem with random utilities: Problem formulation and Mgorithms[J]. European Journal of Operational Research, 2002, 143: 518-530.
  • 4Berman O, Krass D. Locating multiple competitive facilities: Spatial interaction models with variable expenditures [J]. Annals of Operations Research, 2002, 111: 197-225.
  • 5Allon G, Federgruen A. Competition in service industries [J]. Operation Research, 2007, 55(1): 37-55.
  • 6Boffey B, Galvao R, Espejo L. A review of congestion models in the location of facilities with immobile servers[J]. European Journal of Operational Research, 2007, 178: 643-662.
  • 7Marianov V, Serra D. Probabilistic, maximal covering location-allocation models for congested system[J]. Journal of Regional Science, 1998, 38(3): 401-424.
  • 8Shavandi H, Mahlooji H. A fuzzy queuing location model with a genetic algorithm for congested systems[J]. Applied Mathematics and Computation, 2006, 181: 440-456.
  • 9Berman O, Krass D, Wang J. Locating service facilities to reduce lost demand[J]. IIE Transaction, 2006, 38: 933-946.
  • 10Silva F, Serra D. Incorporating waiting time in competitive location models[J]. Netw Spat Econ, 2007, 7:63-76.

共引文献8

同被引文献23

  • 1Hotelling. Stability in competition[J]. J of Economic, 1929, 39(153): 41-57.
  • 2Huff D L. A probabilistic analysis of shopping center trade areas[J]. Land Economics, 1963, 39(1): 81-90.
  • 3Drezner T. Locating a single new facility among existing unequally attractiveness facilities [J]. J of Regional Science, 1994, 34(2): 237-252.
  • 4Drezner Z, Wesolowsky G O, Drezner T. The gradual covering problem[J], Naval Research Logistics, 2004, 51(6): 841-855.
  • 5Berman O, Drezner Z, Krass D, et al. The variable radius covering problem[J]. European J of Operational Research, 2009, 137(7): 516-525.
  • 6Berman O, Larson R C, Fouska N. Optimal location of discretionary service facilities[J]. Transportation Science, 1992, 26(3): 201-211.
  • 7Hodgson M J. A flow-capturing location-allocation model[J]. Geographical Analysis, 1990, 22(3): 270-279.
  • 8Aboolian R, Berman O, Krass D. Competitive facility location and design problem[J]. European J of Operational Research, 2007, 182(1): 40-62.
  • 9Mirabi M, Fatemi Ghomi S M T, Jolai E Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem[J]. Robotics and Computer Integrated Manufacturing, 2010, 26(6): 564-569.
  • 10Christophe Duhamel, Philippe Lacomme, Christian Prins, et al. A GRASPxELS approach for the capacitated location-routing problem[J]. Computers and Operations Research, 2010, 37(11): 1912-1923.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部