期刊文献+

常数比例投资下正则变化尾且相依索赔的渐近破产概率 被引量:3

Asymptotic ruin probabilities for proportional investment under interest force with regularly-varing-tailed and independent claims
下载PDF
导出
摘要 研究了更新风险模型中的渐近破产概率,其中允许保险公司将其资产按常数比例投资于满足几何布朗运动的股票市场,其余部分投资于非负利率的债券市场.对此模型假定索赔额满足正则分布且两两拟渐近独立,根据伊藤公式,给出保险公司资产的表达式,并最后给出了有限时间和无限时间的破产概率.当更新过程的特殊情况即复合泊松过程且索赔额独立同分布时,得出最终破产概率简洁的渐近表达式,与文献[Gaier J,Grandits P.Ruin probabilities and investment underinterest force in the presence of regularly varying tails.Scand Actuarial J,2004(4):256-278]中得到结果一样,并给出了模拟的结果. The asymptotic behavior of ruin probabilities was investigated in a renewal risk model, in which the insurance company is allowed to invest a constant fraction of its wealth in a stock market which is described by a geometric Brownian motion and the remaining wealth in a bond with nonnegative interest force. For this model, in the presence of pairwise quasi-asymptotic independent and regularly-varying- tailed claims, the expression of the wealth process was derived by ho formula, and then the finite-time and ultimate ruin probabilities were obtained. Specially, in the compound Poisson model with independent and identically distributed claims, explicit asymptotic expression ~or the ultimate ruin probability was given, which is just the same as Ref. [-Gaier J, Grandits P. Ruin probabilities and investment under interest force in the presence of regularly varying tails. Scand Actuarial J, 2004(4) : 256- 278]. Finally, some numerical results were given.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2013年第6期431-437,共7页 JUSTC
基金 国家自然科学基金(10801124 11171321) 中央高校基本科研业务费专项基金资助
关键词 破产概率 两两拟渐近独立 利息力 正则变换 几何布朗运动 ruin probabilities pairwise quasi-asymptotic independence interest force regular variation geometric Brownian motion
  • 相关文献

参考文献26

  • 1Browne S.Optimal investment policies for a firm with a random risk process:Exponential utility and minimizing the probability of ruin[J].Mathematics of Operations Research,1995,20:937-958.
  • 2Asmussen S,Taksar M.Controlled diffusion models for optimal dividend pay-out[J].Insurance:Mathematics and Economics,1995,20:1-15.
  • 3Paulsen J,Gjessing H K.Optimal choice of dividend barriers for a risk process with stochastic return on investments[J].Insurance:Mathematics and Economics,1997,20:215-223.
  • 4Hipp C,Taksar M.Stochastic control for optimal new business[J].Insurance:Mathematics and Economics,2000,26:185-192.
  • 5Hipp C,Plum M.Optimal investment for insurers[J].Insurance:Mathematics and Economics,2000,27:215-228.
  • 6Gerber H,Shiu E S W.Optimal dividends:Analysis with Brownian motion[J].North American Actuarial Journal,2004,8(1):1-20.
  • 7Hipp C,Plum M.Optimal investment for investors with state dependent income,and for insurers[J].Finance and Stochastics,2003,7:299-321.
  • 8Irgend C,Paulsen J.Optimal control of risk exposure,reinsurance and investments for insurance portfolios[J].Insurance:Mathematics and Economics,2004,35:21-51.
  • 9Moore K S,Young V R.Optimal insurance in a continuous-time model[J].Insurance:Mathematics and Economics,2006,39(1):47-68.
  • 10Gaier J,Grandits P.Ruin probabilities and investment under interest force in the presence of regularly varying tails[J].Scand Actuarial J,2004(4):256-278.

同被引文献29

  • 1WEI Li School of Finance,Renmin University of China,Beijing 100872,China.Ruin probability of the renewal model with risky investment and large claims[J].Science China Mathematics,2009,52(7):1539-1545. 被引量:4
  • 2肖鸿民.多险种风险模型的破产概率[J].西北师范大学学报(自然科学版),2006,42(5):10-12. 被引量:5
  • 3刘俊山.基于风险测度理论的VaR与CVaR的比较研究[J].数量经济技术经济研究,2007,24(3):125-133. 被引量:39
  • 4Hipp C, Plum M. Optimal investment for insurers[J]. Insurance: Mathematics and Economics, 2000, 27(2): 215-228.
  • 5Liu C S, Yang H. Optimal investment for an insurer to minimize its probability of ruin[J]. North American Actuarial Journal, 2004, 8(2): 11-31.
  • 6Kostadinova R. Optimal investment for insurers when the stock price follows an exponential L~vy process[J]. Insurance: Mathematics and Economics, 2007, 41(2): 250-263.
  • 7Chen Y, Yuen K. Sums of pairwise quasi-asymptotically independent random variables with consistent vari- ation[J]. Stochastic Models, 2009, 25(1): 76-89.
  • 8Yi L, Chen Y, Su C. Approximation of the tail probability of randomly weighted sums of dependent random variables with dominated variation[J]. Journal of Mathematical Analysis & Applications, 2011, 376(1): 365- 372.
  • 9Chen Y, Huang Y, Zhang W P. Asymptotic ruin probabilities for proportional investment under interest force with dominatedly-varying-tailed claims[J]. Journal of the Korean Statistical Society, 2012, 41(1): 87-95.
  • 10Kluppelberg C, Kostadinova R. Integrated insurance risk models with exponential Levy investment[J]. In- surance: Mathematics and Economics, 2008, 42(2): 560-577.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部