期刊文献+

光通信系统中基于BIBD对QC-LDPC码的研究 被引量:2

Study on QC-LDPC Codes Based on BIBD for Optical Communication Systems
下载PDF
导出
摘要 基于平衡不完全区组设计(BIBD),深入分析与研究了准循环低密度奇偶校验(QC-LDPC)码的一种新颖构造方法,并通过该构造方法构造了3种同码率不同码长的QC-LDPC码,通过对这3种QC-LDPC码的仿真分析表明,同码率下,码长越长性能越好。同时在BER=10-6时码率均为93.7%的情况下,所构造的BIBD-QC-LDPC(5392,5056)码的净编码增益(NCG)比已广泛应用于光通信系统中的经典RS(255,239)码和ITU-T G.975.1中的LDPC(32640,30592)码分别提高了约2.13dB和1.41dB。因而其纠错性能更强,更适用于高速长距离光通信系统。该新颖构造方法简单灵活且编译码更容易实现。 Based on the Balanced Incomplete Block Design(BIBD),a novel construction method of Quasi-Cyclic Low-Density Parity-Check(QC-LDPC) codes is further analyzed and researched.And the three QC-LDPC codes with the same code-rate and different code-length are constructed by applying the proposed method.The simulation analysis shows that under the condition of the same code-rate,the QC-LDPC code with the longer code-length has better error-correction performance.Simultaneously,at the condition of the bit error rate(BER) of 10-6 and the same code rate of 93.7%,the net coding gain(NCG) of the constructed BIBD-QC-LDPC(5392,5056) code is respectively 2.13 dB and 1.41 dB higher than that of the classic RS(255,239) code widely used in optical communication systems and that of the LDPC(32640,30592) code in ITU-T G.975.1.Therefore,the BIBD-QC-LDPC(5392,5056) code has much superior error-correction performance and is better suitable for high-speed long-haul optical communication systems.
出处 《半导体光电》 CAS CSCD 北大核心 2013年第3期473-475,481,共4页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61071117 61275077 61003256) 重庆市自然科学基金项目(2010BB2409) 重庆市教委项目(KJ110519)
  • 相关文献

参考文献11

  • 1Djordjevie I B,Xu Lei,Wang Ting,et al. GLDPC codes with Reed-Muller component codes suitable for optical communications[J]. IEEE Commun. Lett. , 2008, 12 (9) : 684-686.
  • 2袁建国,王望,梁天宇.一种高速长距离光通信系统中QC-LDPC码的构造方法[J].光电子.激光,2012,23(5):906-909. 被引量:24
  • 3袁建国,叶文伟.光传输系统中FEC码型的分析与研究[J].重庆邮电大学学报(自然科学版),2008,20(1):78-82. 被引量:21
  • 4Gallager R G. Low density parity check codes [J]. IEEE Trans. on Information Theory, 1962,8 (3) : 21- 28.
  • 5Smith B,Ardakani M. Design of irregular LDPC codes with optimized performance-complexity tradeoff [J]. IEEE Trans. on Commun. ,2010,58(2) :489-499.
  • 6肖勇.基于分组混合策略的LDPC置信传播译码算法[J].重庆邮电大学学报(自然科学版),2010,22(2):192-195. 被引量:16
  • 7朱联祥,杨海艳.一种构造八环准循环LDLC码的搜索算法[J].重庆邮电大学学报(自然科学版),2011,23(5):570-573. 被引量:13
  • 8Lan L, Zeng L, Tai Y, et al. Construction of quasi- cyclic LDPC codes for AWGN and binary erasure channels., a finite field approach[J]. IEEE Trans. on Information Theory,2007,53(7) ..2429-2458.
  • 9Laendner S, Milenkovic O. LDPC codes based on Latin squsres., cycle structure, stopping ser, and trapping set anslysis[J]. IEEE Trans. on Commun. , 2007,55(.2) .. 303-312.
  • 10Vasic B. Combinatorial construction o[ low-density parity check codes for iterative decoding[J]. IEEE Trans. Inf. Theory, 2004,50(6):1156-1176.

二级参考文献41

  • 1袁建国,叶文伟,毛幼菊.光通信系统中基于LDPC码的SFEC码型研究[J].光电子.激光,2009,20(11):1450-1453. 被引量:10
  • 2曾蓉,梁钊.低密度校验(LDPC)码的构造及编码[J].重庆邮电学院学报(自然科学版),2005,17(3):316-319. 被引量:12
  • 3YUAN Jian-guo,JIANG Ze,MAO You-ju.Improved FEC Code Based on Concatenated Code for Optical Transmission Systems[J].Semiconductor Photonics and Technology,2006,12(3):211-216. 被引量:1
  • 4GALLAGER R G.Low-Density Parity-Check Codes[M].Cambridge,MA:MIT Press,1963:21-28.
  • 5TANNER R M.A recursive approach to low complexity codes[J].IEEE Trans Information Theory,1981,27(5):533-547.
  • 6MACKAY D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans Information Theory,1999,45(2):399-431.
  • 7MCELIECE R J,MACKAY D J C,CHENG J-F.Turbo propagation algorithm.IEEE J Selected Areas Communications,1998,16(2):140-152.
  • 8ZHANG J,WANG Y,FOSSORIERM P C,et al.Iteratire decoding with replicas[J].IEEE Trans Information Theory,2007,53(5):1644-1663.
  • 9HE Z,ROY S,FORTIER P.lowering error floor of LDPC codes using a joint row-column decoding algorithm[C]//Proc IEEE ICC 2007,Glasgow,Scotland:IEEE,2007:920-925.
  • 10[1]龚倩,徐荣,叶小华,等.高速超长距离光通信技术[M].北京:人民邮电出版社,2005.

共引文献56

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部