期刊文献+

心肌兴奋-收缩耦联在出生后哺乳动物发育中的变化 被引量:1

下载PDF
导出
摘要 兴奋-收缩耦联是心肌收缩的关键机制,由于出生后早期未成熟心肌与成熟心肌结构组成存在极大差异,因此这两个阶段心肌兴奋-收缩耦联调控机制有很大的不同。虽然成年心肌兴奋-收缩耦联的机制已很清楚,但调控未成熟心肌此过程的机制则尚待阐明。对这种"未成熟机制"的深入了解对于小儿先天性心脏病的治疗有着不容忽视的指导意义。未成熟心肌不同于成熟心肌兴奋-收缩耦联过程之处主要是参与此过程的钙通道的差异,本文通过与成熟心肌细胞兴奋-收缩耦联机制的比较,综述未成熟心肌细胞在出生后发育过程中调控细胞内Ca2+的各种通道的表型变化以及参与心肌兴奋-收缩耦联过程的机制变化。
机构地区 中国医学科学院
出处 《生理科学进展》 CAS CSCD 北大核心 2013年第3期227-232,共6页 Progress in Physiological Sciences
基金 国家重点基础研究发展计划(973计划)(2010CB529500)资助课题
  • 相关文献

参考文献15

  • 1Sedarat F, Xu L, Moore ED, et al. Colocalization of dihydropyridine and ryanodine receptors in neonate rabbit heart using confocal microscopy. Am J Physiol Heart Circ Physiol, 2000 ,279 : H202 - H209.
  • 2Seki S. Fetal and postnatal development of Ca^2+ transients and Ca^2+ sparks in rat cardiomyocytes. Cardiovascular Research,2003,58 : 535 -548.
  • 3Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res, 2011 , 108 : 607 -618.
  • 4Qu Y, Boutjdir M. Gene expression of SERCA2a and L- and T-type Ca channels during human heart development. Pediatr Res ,2001,50 : 569 - 574.
  • 5Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1 ,4-dihydropyridine and ryanodine receptors. Circ Res, 1991 ,68 : 662 - 673.
  • 6Escobar AL, Ribeiro-Costa R, Villalba-Galea C, et al. Developmental changes of intracellular Ca^2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol ,2004 ,286 : H971 - H978.
  • 7Ono K, Iijima T. Cardiac T-type Ca^2+ channels in the heart. J Mol Cell Cardiol ,2010 ,48 : 65 -70.
  • 8Wetzel GT, Chen F, KJitzner TS. Na^+/Ca^2+ exchange and cell contraction in isolated neonatal and adult rabbit cardiac myocytes. Am J Physiol, 1995,268 : H1723 - H1733.
  • 9Takizawa M, Ishiwata T, Kawamura Y, et al. Contribution of sarcoplasmic reticulum Ca^2+ release and Ca^2+ transporters on sarcolemmal channels to Ca^2+ transient in fetal mouse heart. Pediatr Res, 2011,69 : 306 - 311.
  • 10Snopko RM, Ramos-Franco J, Di Maio A, et al. Ca^2+ sparks and cellular distribution of ryanodine receptors in developing cardiomyocytes from rat. J Mol Cell Cardiol, 2008,44 : 1032 - 1044.

同被引文献20

  • 11.Rivera R, Chun J. Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol. 2008, 160:25-46 2.
  • 2Moolenaar WH, van Meeteren LA, Giepmans BN. The ins and outs oflysophosphatidic acid signaling. Bioessays. 2004, 26(8): 870-81 3.
  • 3Ye X, Hama K, Contos J J, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005, 435(7038): 104-8 4.
  • 4Choi JW, Herr DR, Noguchi K, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010, 50:157-86 5.
  • 5Xu Y J, Saini HK, Cheema SK, et al. Mechanisms of lysophosphatidic acid-induced increase in intracellular calcium in vascular smooth muscle ceils. Cell Calcium. 2005, 38(6): 569-79 6.
  • 6Xu YJ, Tappia PS, Goyal RK, et al. Mechanisms of the lysophosphatidic acid-induced increase in [Ca(2+)](i) in skeletal muscle cells. J Cell Mol Med. 2008, 12(3): 942-54 7.
  • 7Xu Y J, Rathi SS, Zhang M, et al. Mechanism of the positive inotropic effect of lysophosphatidic acid in rat heart. J Cardiovasc Pharmacol Ther. 2002, 7(2): 109-15 8.
  • 8Wang F, Hou J, Han B, et al. Developmental changes in lysophospholipid receptor expression in rodent heart from near-term fetus to adult. Mol Biol Rep. 2012, 39(9): 9075-84 9.
  • 9Hopkins SF, Jr., McCutcheon EP, Wekstein DR. Postnatal changes in rat ventricular function. Circ" Res. 1973, 32(6): 685-91 10.
  • 10Wu Y, Wu EX. MR study of postnatal development of myocardial structure and left ventricular function. J Magn Reson Imaging. 2009, 30(1): 47-53 11.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部