期刊文献+

改进的固定点图像复原算法(英文) 被引量:5

Improved fixed point method for image restoration
下载PDF
导出
摘要 研究了周期边界条件下,Tikhonov正则化的固定点算法,提出了变化正则化参数的方法。首先对正则化参数取较大值,抑制复原图像中的噪声,通过得出的收敛结果来修正初始梯度;然后对正则化参数取较小值,以增强复原图像中的细节。实验结果表明,与当前求解L1范数正则化函数和全变分正则化函数的流行算法比较,本文算法对于运动模糊与高斯模糊图像的复原效果更佳。 We analyze the fixed point method with Tikhonov regularization under the periodic boundary condi- tions, and propose a changable regularization parameter method. Firstly, we choose a bigger one to restrain the noise in the reconstructed image, and get a convergent result to modify the initial gradient. Secondly, we choose a smaller one to increase the details in the image. Experimental results show that compared with other popular algorithms which solve the L1 norm regularization function and Total Variation (TV) regularization function, the improved fixed point method performs favorably in solving the problem of the motion degradation and Gaussian degradation.
出处 《中国光学》 EI CAS 2013年第3期318-324,共7页 Chinese Optics
基金 Major State Basic Research Development Program of China(973 Program,No.2009CB72400603) The National Natural Science:Scientific Instrumentation Special Project(No.61027002) The National Natural Science Foundation of China(No.60972100)
关键词 图像复原 周期边界条件 TIKHONOV正则化 变正则化参数 image restoration periodic boundary condition Tikhonov regularization change regularization parameter
  • 相关文献

参考文献24

  • 1HANSEN P C, NAGY J G, DEBLURRING D P. Images: Matrices, Spectra, and Filtering[ M ]. Philadelphia: SIAM, Soci- ety for Industrial and Applied Mathematics,2006.
  • 2DAUBECHIES I,FRIESE M D, MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[ J]. Communications in Pure and Applied Mathematics ,2004,57 : 1413-1457.
  • 3ELAD M, MATALON B, ZIBULEVSKY M. Image denoising with shrinkage and redundant representations [ C ]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR"2006, New York, 2006,2: 1924-1931 .
  • 4FIGUEIREDO M, BIOUCAS-DIAS J, NOWAK R. Majorization minimization algorithms for wavelet-based image restoration [J]. IEEE T. Image Process. ,2007,16(12) :2980-2991.
  • 5FIGUEIREDO M, NOWAK R. An EM algorithm for wavelet-based image restoration[ J ]. IEEE T. Image Process. ,2003, 12:906-916.
  • 6FIGUEIREDO M, NOWAK R. A bound optimization approach to wavelet-based image deeonvolution[ C]//Proc. of the IEEE International Conference on Image Processing, ICIP'2005, Genoa, Italy,2005,2:782.
  • 7RUDIN L,OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms[ J]. Phys. D, 1992,60(1-4) : 259-268.
  • 8RUDIN L, OSHER S. Total variation based image restoration with free local constraints [ C ]//Proe. of the IEEE Interna- l tional Conference on Image Processing, ICIP, 1994,1:31-35.
  • 9CHAMBOLLE A. An algorithm for total variation minimizationand applications[ J]. J. Math. Imaging Vis. ,2004,20:89- 97.
  • 10CHAN T, ESEDOGLU S, PARK F,et al.. Recent developments in total variation image restoration: Handbook of Mathe- matical Models in Computer Vision [ M ]. New York : Springer Verlag,2005.

同被引文献54

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部