期刊文献+

最小二乘法求解非线性方程的物理偏振参量测量

Measurement of Physical Polarization Parameters by Solving Nonlinear Estimation Equation with Least-Square Method
原文传递
导出
摘要 提出了基于最小二乘优化系统的估值方法测量求解光器件物理偏振参量。对于输入偏振态可测或非可测的系统,在建立相应的估值解析方程和适当的测量条件基础上,此测量方案均是简单易行的。对以旋转波片为偏振发生器的测量系统的估值误差进行了仿真和分析。仿真表明,选取较多的测量次数,且旋转波片延迟为37c/4附近时,可得到较小的估值误差。基于系统估值算法,针对输入偏振态可直接测量的情况建立了实验系统并进行估值。实验表明,估值得到的物理偏振参量的标准差在0.0011--0.0103内。 The system estimation by least square optimization is employed to obtain physical polarization parameters of optical devices. The method has proven to be flexible and convenient for measuring polarization parameters in dif- ferent systems where the input state of polarization (SOP) of the devices is either measurable or not, providing the analytical estimation equations and adequate measurements are available. The estimation error in the measurement system with a rotating wave-plate (WP) as the polarization state generator is analyzed and simulated. Better estima- tion precision can be obtained by involving more SOP measurements in estimations and choosing a WP with retardance around 3rr/4. Experiment based on the conception is demonstrated to estimate the polarization parameters of a fiber polarization controller with measurable input SOP. The standard deviations of estimated polarization parameters are within 0. 0011 -0. 0103.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第F06期53-59,共7页 Acta Optica Sinica
基金 国家自然科学基金(61077018)和上海市重点学科项目(S30L08/08DZ2231100)资助课题.
关键词 光通信 偏振参数 穆勒矩阵 系统估值 最小二乘法 optical communications polarization parameter mueller matrix system estimation least square method
  • 相关文献

参考文献18

  • 1X Guo, M F G Wood. Angular measurements of light scattered by turbid chairal media using linear Stokes polarimeter[J]. J Biomed Opt, 2006, 11(4): 041105.
  • 2M A Wallenburg, M F G Wood, N Ghosh, et al.. Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy[J]. Opt Lett, 2010, 35(15): 2570-2572.
  • 3B D Cameronand, G L Cote. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach[J]. IEEE Trans Biomedical Eng, 1997, 44(12): 1221-1227.
  • 4Z Li, C Wu, H Dong, et al.. Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers[J]. Opt Express, 2008, 16(6): 3955-3960.
  • 5R A Synowicki, J N Hilfilker, P K Whitman. Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DPDK)[J]. Thin Solid Films, 2004, 455-456: 624-627.
  • 6H Takechi, O Arteaga, J M Ribo, et al.. Chiroptical measurement of chiral aggregates at liquid-liquid interface in centrifugal liquid membrane cell by Mueller matrix and conventional circular dichroism methods[J]. Molecules, 2011, 16(5): 3636-3647.
  • 7J F Lin. Concurrent measurement of linear and circular birefringence using rotating wave plate Stokes polarimeter[J]. Appl Opt, 2008, 47(25): 4529-4539.
  • 8P C Chen, Y L Lo, T C Yu, et al.. Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters[J]. Opt Express, 2010, 17(18): 15860-15884.
  • 9S Y Lu, R A Chipman. Interpretation of matrices based on polar decomposition[J]. J Opt Soc Am A, 1996, 13(5): 1106-1113.
  • 10S Y Lu, R A Chipman. Mueller matrix and the degree of polarization[J]. Opt Commun, 1998, 146(1-6): 11-14.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部