期刊文献+

径向剪切干涉术的标定算法研究 被引量:1

Study of Calibration Method of Radial Shearing Interferometry
原文传递
导出
摘要 径向剪切干涉术目前被广泛运用于波前检测,但其测量结果中不仅包括待测波前的实际相位信息,也包括剪切干涉仪自身的系统误差。通过平移待测元件获取其产生的透射波前在不同位置时的干涉条纹图所包含的相位信息,运用最大似然方法对多次采集的相位差进行线性组合分析和最大似然估计,将待测波前相位差与系统误差相位差分离。对该方法进行了模拟实验,结果表明最大似然法可以将系统误差相位差与待测波前相位差分离,实现对剪切干涉仪的标定,为提取和重建待测元件波前消除了系统误差的干扰。 Radial shearing interferometry has been widely used to test distorted wavefront. However, the result of wavefront measurement by using this technique includes two parts, one is the real phase information of wavefront under test and the other is the system errors in radial shearing interferometer. A calibration method of a radial shearing interferometer is presented. First of all, several fringe patterns of the phase difference distribution are obtained by a tested component with different positions. Then, the maximum likelihood method is used to combine the phase difference data and create a maximum likelihood function. After that, the wavefront under test and system errors can be separated. The simulation results show that the maximum likelihood method can deal with the issue of the calibration of a radial shearing interferometer. Furthermore, the method is used to reduce the effect of the system errors on extracting and reconstructing the wavefront under test.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第F06期87-92,共6页 Acta Optica Sinica
基金 国家自然科学基金(60877004)资助课题.
关键词 测量 最大似然法 环路径向剪切干涉 绝对测量 标定 measurement maximum likelihood method cyclic radial shearing interferometry absolute measurement calibration
  • 相关文献

参考文献19

  • 1D. Liu, Y. Yang, Y. Shen et al.. System optimization of radial shearing interferometer for aspheric testing[C]. SPIE, 2007, 6834: 68340U.
  • 2M. Wang, B. Zhang, N. Shouping. Radial shearing interferometer for aspheric surface testing[C]. SPIE, 2002, 4927: 673-676.
  • 3李大海,陈怀新,陈祯培.利用液晶电视的位相调制特性补偿畸变波前[J].中国激光,2003,30(7):614-618. 被引量:12
  • 4D. Liu, Y. Yang, J. Weng et al.. Measurement of transient near-infrared laser pulse wavefront with high precision by radial shearing interferometer[J]. Opt. Commun., 2007, 275(1): 173-178.
  • 5T. Shirai. Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging[J]. Appl. Opt., 2002, 41(19): 4013-4023.
  • 6D. Liu, Y. Yang, L. Wang et al.. Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer[J]. Appl. Opt., 2007, 46(34): 8305-8314.
  • 7C. Hernandez-Gomez, J. L. Collier, S. J. Hawkes. Wave-front control of a large-aperture laser system by use of a static phase corrector[J]. Appl. Opt., 2000, 39(12): 1954-1961.
  • 8D. Li, F. Wen, Q. Wang et al.. Improved formula of wavefront reconstruction from a radial shearing interferogram[J]. Opt. Lett., 2008, 33(3): 210-212.
  • 9D. Li, P. Wang, X. Li et al.. Algorithm for near-field reconstruction based on radial-shearing interferometry[J]. Opt. Lett., 2005, 30(5): 492-494.
  • 10N. Gu, L. Huang, Z. Yang et al.. Modal wavefront reconstruction for radial shearing interferometer with lateral shear[J]. Opt. Lett., 2011, 36(18): 3693-3695.

二级参考文献11

  • 1J. C. Chanteloup, A. Migus, B. Loiseaux et al..Wave-front control of solid state lasers using an optically addressed light valve in an adaptive opties loop and applications to ultra-intense pulse [C]. SPIE,1999, 3492:702-707.
  • 2Rensheng Dou, M. K. Giles. Closed-loop adaptiveoptics system with a liquid-crystal television as a phase retarder [J]. Opt. Lett. , 1995, 20(14) : 1583-1585.
  • 3T. Shirai, T. H. Barnes. T. G. Haskell. Adaptive wave-front correction by means of all-optical feedback interferometry [J]. Opt. Lett: 2000, 25 ( 11 ) : 773-775.
  • 4T. L. Kelly, J. Munch. Phase-aberration correction with dual liquid -crystal spatial light modulators [J].Appl. Opt., 1998, 37(22):5184-5189.
  • 5S. R. Restaino, E. L. Gates. R. A. Carreras et al..On the use of electro-optical devices for O. P. L.compensation [C]. SPIE, 1994. 2200:494-500.
  • 6R. S. Dou, M. K. Giles. Phase measurement and compensation of a wave front using a twisted nematic liquid-crystal television [J]. Appl. Opt., 1996, 35(19) :3647-3652.
  • 7K. H. Lu, B. E. A. Saleh. Theory and design of the liquid crystal TV as an optical spatial phase modulator[J]. Opt. Eng., 1990. 29(3):240-245.
  • 8L. G. Neto, D. Rogerge, Y. Sheng. Full-range·continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions [J]. Appl.Opt., 1996. 35(23):4567-4576.
  • 9M. V. R. K. Murty. A compact radial shearing interferometer based on the law of refraction [J ].Appl. Opt., 1964, 3(7):853-857.
  • 10Li Dahai, Chen Huaixin, Chen Zhenpei et al..Algorithm and accuracy study of wavefront reconstruction with different amplification ratio based on the cyclic radial shearing interferometer [J]. Chinese J.Lasers ( 中国激光) . 2002, A29(6):503-508 (in Chinese).

共引文献11

同被引文献15

  • 1Malacara D. Optical Shop Testing[M]. United States John Wiley & Sons, 2007. 108 -111.
  • 2Dai F, Tang F, Wang X, e: al: Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51 (21) 5028-5037.
  • 3Donald J Bone, H A Baehor, Sandeman R J. Fringe pattern analysis using 2D Fourier transform[J]. Appl Opt, 1986, 25 (10): 1653 1660.
  • 4Roddier F, Roddier C. Wavefront reconstruction using iterative Fourier transforms[J]. ApplOpt, 1991, 30(11): 1325 1327.
  • 5Naulleau P P, Goldberg K A, Bokor J. Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four- mirror optical system[J]. J Vacuum Science : Technology B: Microelectronics and Nanometer Structures, 2000, 18 ( 6 ) : 2939-2943.
  • 6Miyakawa R H. Wavefront Metrology for High Resolution Optical Systems[D]. Berkeley: University of California, 2011. 44-52.
  • 7Liu Z, Sugisaki K, Ishii M, el al: Astigmatism measurement by lateral shearing interferometer [ J ]. J Vacuum Science Technology B: Microelectronics and Nanometer Structures, 2004, 22(6): 2980-2983.
  • 8Goldberg K A. Extreme Ultraviolet Interferometry [ D]. Berkeley: University of California, 1997. 74 84.
  • 9Liu Z, Sugisaki K, Zhu Y, el al: Double-grating lateral shearing interferometer for extreme ultraviolet lithography[J]. Jpn J Appl Phys, 2004, 43(6): 3718-3721.
  • 10Sugisaki K, Hasegawa M, Okada M, el al: EUVA's Challenges Toward 0.1 nm Accuracy in EUV at Wavelength Interferometry [M]. Berlin: Springer, 2006. 252 266.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部